Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 12  |  Issue : 46  |  Page : 129-138

Flavonoids derived from Abelmoschus esculentus attenuatesUV-B Induced cell damage in human dermal fibroblasts throughNrf2-ARE pathway


Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Mumbai, Maharashtra, India

Correspondence Address:
Purvi Bhatt
Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Vile Parle (W), Mumbai - 400 056, Maharashtra
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.182175

Rights and Permissions

Background: Ultraviolet-B (UV-B) radiation is a smaller fraction of the total radiation reaching the Earth but leads to extensive damage to the deoxyribonucleic acid (DNA) and other biomolecules through formation of free radicals altering redox homeostasis of the cell. Abelmoschus esculentus (okra) has been known in Ayurveda as antidiabetic, hypolipidemic, demulscent, antispasmodic, diuretic, purgative, etc. Objective: The aim of this study is to evaluate the protective effect of flavonoids from A. esculentus against UV-B-induced cell damage in human dermal fibroblasts. Materials and Methods: UV-B protective activity of ethyl acetate (EA) fraction of okra was studied against UV-B-induced cytotoxicity, antioxidant regulation, oxidative DNA damage, intracellular reactive oxygen species (ROS) generation, apoptotic morphological changes, and regulation of heme oxygenase-1 (HO-1) gene through nuclear factor E2-related factor 2-antioxidant response element (Nrf2-ARE) pathway. Results: Flavonoid-rich EA fraction depicted a significant antioxidant potential also showing presence of rutin. Pretreatment of cells with EA fraction (10–30 μg/ml) prevented UV-B-induced cytotoxicity, depletion of endogenous enzymatic antioxidants, oxidative DNA damage, intracellular ROS production, apoptotic changes, and overexpression of Nrf2 and HO-1. Conclusion: Our study demonstrated for the 1st time that EA fraction of okra may reduce oxidative stress through Nrf2-ARE pathway as well as through endogenous enzymatic antioxidant system. These results suggested that flavonoids from okra may be considered as potential UV-B protective agents and may also be formulated into herbal sunscreen for topical application. SUMMARY
  • Flavonoid.enriched ethyl acetate.(EA) fraction from A. esculentus protected against ultraviolet.B.(UV.B).induced oxidative DNA damage
  • EA fraction prevented UV-B-induced cytotoxicity, depletion of endogenous enzymatic antioxidants, and intracellular reactive oxygen species production
  • EA fraction could reduce oxidative stress through the Nrf2-.ARE Pathway
  • EA fraction was found to be nongenotoxic and prevented apoptotic changes.
HIGHLIGHTS
  • Flavonoids from Abelmoschus esculentus protected from ultraviolet.B.induced damage
  • They were capable of reducing oxidative stress through Nrf2-.ARE Pathway
  • They are nongenotoxic and do not possess mutagenic potential
  • Flavonoids from A. esculentus can be studied and explored further for its topical application as sunscreen.
Abbreviations used:ABTS: 2,2'-azino-bis-(3-ethylbenzothiazoline -6-sulphonic acid), AO: Acridine orange, ANOVA: Analysis of variance, ARE: Antioxidant response elements, BSA: Bovine serum albumin, CAPE: Caffeic acid phenethyl ester, CAT: Catalase, DCFH-DA: 2',7'-dichlorofluorescein diacetate, DMEM: Dulbecco's modified eagle's medium, DMSO: dimethyl sulfoxide, DNA: Deoxyribonucleic acid, DPBS: Dulbecco's phosphate-buffered saline, DPPH: 2,2-diphenyl-1-picryl hydrazyl, ECL: Enhanced chemiluminescence, EDTA: Ethylenediaminetetraacetic acid, ELISA: Enzyme-linked immunosorbent assay, EtBr: Ethidium bromide, FBS: Fetal bovine serum, FE Fraction: Flavonoid-enriched fraction, FRAP: Ferric reducing antioxidant power, GPx: Glutathione peroxidase, GR: Glutathione reductase, GST: Glutathione-S-transferase, GSH: Reduced glutathione, GSSG: Oxidized glutathione, HDF: Human dermal fibroblast adult cells, HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid, HRP: Horseradish peroxidase, HO-1: Heme oxygenase-1, HPTLC: High-performance thin layer chromatography, Keap-1: Kelch-like ECH-associated protein-1, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, NaCl: sodium chloride, NFDM: nonfat dry milk, Nrf2: Nuclear factor E2-related factor 2, NQO1: NAD (P) H: Quinine oxidoreductase 1, OH: Hydroxyl ions, PBST: Phosphate-buffered saline with 0.1% tween 20, PCR: Polymerase chain reaction, PMSF: Phenylmethanesulfonyl fluoride, Rf: Retention factor, ROS: Reactive oxygen species, rRNA: Ribosomal ribonucleic acid, SDS: Sodium dodecyl sulfate, SOD: Superoxide dismutase, TLC: Thin layer chromatography, TLC-DPPH: Thin layer chromatography-2,2-diphenyl-1-picryl hydrazyl, UV: Ultraviolet, UV-A: Ultraviolet-A, UV-B: Ultraviolet-B, UV-C: Ultraviolet-C, qPCR: Quantitative polymerase chain reaction


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2100    
    Printed28    
    Emailed0    
    PDF Downloaded21    
    Comments [Add]    
    Cited by others 2    

Recommend this journal