Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 12  |  Issue : 46  |  Page : 104-108

Quantitative analysis and In vitro anti-inflammatory effects of gallic acid, ellagic acid, and quercetin from radix sanguisorbae


1 K-Herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
2 KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea

Correspondence Address:
Hyeun-Kyoo Shin
K-herb Research Center, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054
Republic of Korea
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.177908

Rights and Permissions

Background: Radix Sanguisorbae has long been used to treat diarrhea, enteritis, duodenal ulcers, and internal hemorrhage. Objective: We investigated the in vitro anti-inflammatory effects of Radix Sanguisorbae and performed quantitative analyses of three marker components, namely gallic acid, ellagic acid, and quercetin, using high-performance liquid chromatography coupled with a photodiode array detector. Materials and Methods: The three marker components were separated using a reversed-phase Gemini C18 analytical column maintained at 40°C by the gradient elution with two solvent systems. We examined the biological effects of the three marker compounds, gallic acid, ellagic acid, and quercetin, by determining their anti-inflammatory activities in the murine macrophage cell line RAW 264.7. Results: All of the marker compounds exhibited inhibitory effects on prostaglandin E2 production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages, with no cytotoxicity. Particularly, ellagic acid significantly inhibited production of the proinflammatory cytokines tumor necrosis factor alpha and interleukin-6 in LPS-treated RAW 264.7 cells. Conclusion: Our results suggest that ellagic acid is the most potent bioactive phytochemical component of radix Sanguisorbae in the treatment of inflammatory diseases.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2769    
    Printed48    
    Emailed0    
    PDF Downloaded22    
    Comments [Add]    
    Cited by others 4    

Recommend this journal