Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 12  |  Issue : 45  |  Page : 84-90

H2O2 improves quality of Radix scutellariae through anti-oxidant effect


1 Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China
2 Department of Pharmacognosy, College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040; Department of Pharmacognosy, College of Pharmacy, Liaoning Medical University, Jinzhou 121000, China

Correspondence Address:
Meng Xiang-cai
College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.176063

Rights and Permissions

Introduction: The correlation between the quality and geographical origin of herbal medicine was traced back to Tang Dynasty in China, more than 1200 years, and the effects of ecological environments on the secondary metabolites such as flavonoids have been confirmed. However, little is known about how the adversity impacts on the quality. Reactive oxygen species (ROS) may be medium between the ecological environment and the secondary metabolism. Materials and Methods: The fresh roots of Scutellaria baicalensis Georgi were treated with 0.002 μmol/L, 0.2 μmol/L, and 20 μmol/L H 2 O 2, respectively. A stress model was established to elucidate the change of secondary metabolism, anti-oxidant enzyme system, and enzymes relating to flavonoids. Results: The activities of superoxide dismutase, catalase and peroxidase decreased. Too much H 2 O 2, firstly, boosted transformation of flavonoids glycoside into aglucon with the most remarkable activities through UDP-glucuronate baicalein 7-O-glucuronosyltransferase (UBGAT), and β-glucuronidase (GUS), then regulated the gene expression of phenylalanine ammonialyase, GUS, and UBGAT, and increased the contents of flavones, motivated the flavonoid glycoside converting into aglucon. With this action, the flavones displaced the anti-oxidant enzymes. The higher the dosage, the more baicalein and wogonin increased, the later they took action. Conclusion: The plant secondary metabolites to keep ROS constant are identical to the effective materials in clinic. They are closely linked. H 2 O 2 can improve flavones, especially the aglucon, and further increased the quality of herbal medicine, which possesses very important value in medical practice.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1122    
    Printed21    
    Emailed0    
    PDF Downloaded21    
    Comments [Add]    

Recommend this journal