Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 12  |  Issue : 45  |  Page : 36-40

7-hydroxycalamenene effects on secreted aspartic proteases activity and biofilm formation of Candida spp.


1 Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal Universityof Rio de Janeiro, CCS, Fundão Island, Rio de Janeiro, RJ, Brazil
2 EMBRAPA Western Amazon, Rodovia AM 10, Manaus, AM, Brazil
3 Department of Natural Products and Food, Federal University of Rio de Janeiro, CCS, Fundão Island, Rio de Janeiro, RJ, Brazil
4 EMBRAPA Food Technology, Avenue of Americas, Rio de Janeiro, RJ, Brazil

Correspondence Address:
Mariana M. B. Azevedo
Department of General Microbiology, Institute of Microbiology Paulo de Góes, Federal Universityof Rio de Janeiro 21941-902, CCS, Fundão Island, Rio de Janeiro, RJ
Brazil
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.176022

Rights and Permissions

Background: The 7-hydroxycalamenenene-rich essential oil (EO) obtained from the leaves of Croton cajucara (red morphotype) have been described as active against bacteria, protozoa, and fungi species. In this work, we aimed to evaluate the effectiveness of 7-hydroxycalamenenene against Candida albicans and nonalbicans species. Materials and Methods: C. cajucara EO was obtained by hydrodistillation and its major compound, 7-hydroxycalamenene, was purified using preparative column chromatography. The anti-candidal activity was investigated by minimum inhibitory concentration (MIC) and secreted aspartic proteases (SAP) and biofilm inhibition assays. Results: 7-hydroxycalamenene (98% purity) displayed anti-candidal activity against all Candida species tested. Higher activity was observed against Candida dubliniensis, Candida parapsilosis and Candida albicans, showing MIC values ranging from 39.06 μg/ml to 78.12 μg/ml. The purified 7-hydroxycalamenene was able to inhibit 58% of C. albicans ATCC 36801 SAP activity at MIC concentration (pH 7.0). However, 7-hydroxycalamenene demonstrated poor inhibitory activity on C. albicans ATCC 10231 biofilm formation even at the highest concentration tested (2500 μg/ml). Conclusion: The bioactive potential of 7-hydroxycalamenene against planktonic Candida spp. further supports its use for the development of antimicrobials with anti-candidal activity.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1106    
    Printed21    
    Emailed0    
    PDF Downloaded19    
    Comments [Add]    

Recommend this journal