Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2016  |  Volume : 12  |  Issue : 45  |  Page : 13-20

Determination of ruscogenin in ophiopogonis radix by high-performance liquid chromatography-evaporative light scattering detector coupled with hierarchical clustering analysis


1 Department of Complex Prescription of TCM, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198, PR China
2 State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, PR China
3 Department of Complex Prescription of TCM, Jiangsu Key Laboratory of TCM Evaluation and Translational Research; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, PR China

Correspondence Address:
Bo-Yang Yu
Department of Complex Prescription of TCM, Jiangsu Key Laboratory of TCM Evaluation and Translational Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198
PR China
Jin Qi
Department of Complex Prescription of TCM, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing 211198
PR China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.176008

Rights and Permissions

Background: Ophiopogonis Radix is a famous traditional Chinese medicine. It is necessary to establish a suitable quality control methods of Ophiopogonis Radix. Objective: To investigate the quality control methods of Ophiopogonis Radix by high-performance liquid chromatography (HPLC) coupled with evaporative light scattering detector (ELSD). Materials and Methods: A rapid and simple method, HPLC coupled with ELSD, was applied to determinate ruscogenin in 35 batches of Ophiopogenis Radix samples. Orthogonal tests and single factor explorations were used to optimize the extraction condition of ruscogenin. The content of ruscogenin in different origin was further analyzed by hierarchical clustering analysis (HCA). Results: The ruscogenin was successfully determined by HPLC-ELSD with a two-phase solvent system composed of methanol-water (88:12) at a flow rate 1.0 ml/min, column temperature maintained at 25°C, detector draft tube temperature at 42.2°C, nebulizer gas flow rate at 1.4 L/min, and the gain at 8. The result showed the good linearity of ruscogenin in the range of 40.20-804.00 μg/ml (R2 = 0.9996). Average of recovery was 101.3% (relative standard deviation = 1.59%). A significant difference of ruscogenin content was shown among 35 batches of Ophiopogenis Radix from different origin, varied from 0.0035% to 0.0240%. HCA based on the content of ruscogenin indicated that Ophiopogonis Radix in different origin was mainly divided into two clusters. Conclusion: This simple, rapid, low-cost, and reliable HPLC-ELSD method could be suitable for measurement of ruscogenin content rations and quality control of Ophiopogonis Radix.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1559    
    Printed34    
    Emailed0    
    PDF Downloaded23    
    Comments [Add]    

Recommend this journal