ORIGINAL ARTICLE |
|
Year : 2015 | Volume
: 11
| Issue : 44 | Page : 682-689 |
|
Optimization of ultrasound-assisted extraction of phenolic compounds from Cimicifugae rhizoma with response surface methodology
Lin Liu1, Bao-Jia Shen2, Dong-Hao Xie1, Bao-Chang Cai2, Kun-Ming Qin2, Hao Cai3
1 Department of Pharmacy, Dahua Hospital, Xuhui District, Shanghai 200237, China 2 Engineering Research Center of Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210029; Nanjing Haichang Chinese Medicine Group Co. Ltd, Nanjing 210061; Key Laboratory of State Administration of TCM for Standardization of Chinese Medicine Processing, Nanjing 210023, China 3 Engineering Research Center of Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing 210029; Key Laboratory of State Administration of TCM for Standardization of Chinese Medicine Processing, Nanjing 210023, China
Correspondence Address:
Bao-Chang Cai No. 12, Yongjin Road, Nanjing High Tech Industry Zone, Jiangsu, 210061 China
 Source of Support: None, Conflict of Interest: None  | Check |
DOI: 10.4103/0973-1296.165545
|
|
Background: Cimicifugae rhizoma was a Ranunculaceae herb belonging to the composite family, and the roots of C. rhizoma have been widely used in tradition Chinese medicine. Materials and Methods: Ultrasound-assisted extraction (UAE) of phenolic compounds from C. rhizoma. Caffeic acid (CA), isoferulic acid (IA), ferulic acid (FA), and total phenols were quantified by high-performance liquid chromatography-diode array detection and ultraviolet-visible spectrophotometer. Effects of several experimental parameters, such as ultrasonic power (W), extraction temperature (°C), and ethanol concentration (%) on extraction efficiencies of phenolic compounds from C. rhizoma were evaluated. Results: The results showed that the optimal UAE condition was obtained with ultrasonic power of 377.35 W, extraction temperature of 70°C, and ethanol concentration of 58.37% for total phenols, and ultrasonic power of 318.28 W, extraction temperature of 59.65°C, and ethanol concentration of 64.43% for combination of CA, IA, FA. Conclusions: The experimental values under optimal conditions were in good consistent with the predicted values, which suggested UAE is more efficient for the extraction of phenolic compounds from plant materials. |
|
|
|
[FULL TEXT] [PDF]* |
|
 |
|