Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2015  |  Volume : 11  |  Issue : 44  |  Page : 592-597

Effects of aronia melanocarpa fruit juice on isolated rat hepatocytes


1 Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Laboratory of Drug Metabolism and Drug Toxicity, Medical University of Sofia, Sofia, Bulgaria
2 Department of Preclinical and Clinical Pharmacology, Medical University, Varna, Bulgaria
3 Department of Pharmacology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria

Correspondence Address:
Magdalena Kondeva-Burdina
Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Laboratory of Drug Metabolism and Drug Toxicity, Medical University of Sofia, Sofia
Bulgaria
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.172967

Rights and Permissions

Background: Aronia melanocarpa (Michx.) Elliot fruits are very rich in polyphenols - procyanidins, flavonoids, and phenolic acids. Objective: On rat hepatocytes, isolated by two-stepped collagenase perfusion, we investigated the effect of A. melanocarpa fruit juice (AMFJ) in two models of liver toxicity caused by (i) metabolic bioactivation of carbon tetrachloride (CCl 4 ), and (ii) tert-butyl hydroperoxide (t-BuOOH)-induced oxidative stress. Materials and Methods: Isolated rat hepatocytes are a suitable model for hepatotoxicity studies. We determined the main parameters of the functional and metabolic status of rat hepatocytes: Cell viability (measured by trypan blue exclusion) and the levels of lactate dehydrogenase (LDH), reduced glutathione (GSH), and malondialdehyde (MDA). These parameters were used to investigate the protective effects of AMFJ in the two toxicity models. The effects of AMFJ were compared with those of silymarin. The cells were treated either with AMFJ or silymarin at increasing concentrations of 5 mg/ml, 10 mg/ml, 30 mg/ml, 50 mg/ml, and 100 mg/ml which were used for measuring of IC 50 . Results: In both toxicity models - CCl 4 and t-BuOOH, AMFJ showed statistically significant cytoprotective and antioxidant activities. AMFJ prevented the loss of cell viability and GSH depletion, decreased LDH leakage and MDA production. The effects of AMFJ at the concentrations of 5, 10, 30, and 50 mg/ml were similar to those of the same concentrations of silymarin, while the effect of the highest AMFJ concentration of 100 mg/ml was higher than that of the same silymarin concentration. The effects were concentration-dependent and more prominent in the t-BuOOH model, compared to those in the CCl 4 model. Conclusion: The cytoprotective and antioxidant effects of AMFJ established in this study might be due to its polyphenolic ingredients, which could influence the cytochrome P450-mediated metabolism of the experimental hepatotoxic substances (CCl 4 and t-BuOOH) and could act as free radical scavengers. The stronger effects of the highest AMFJ concentration in comparison with that of silymarin were possibly due to the combined presence of different polyphenols in the juice.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed979    
    Printed19    
    Emailed0    
    PDF Downloaded16    
    Comments [Add]    

Recommend this journal