Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2015  |  Volume : 11  |  Issue : 43  |  Page : 449-454

Anti-aging effect of polysaccharide from Bletilla striata on nematode Caenorhabditis elegans


1 College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
2 School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, 213164, China

Correspondence Address:
Xiaoyu Ding
College of Life Sciences, Nanjing Normal University, Nanjing, 210046
China
Ziheng Zhuang
School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, 213164
China
Login to access the Email id

Source of Support: Nil, Conflict of Interest: None declared.


DOI: 10.4103/0973-1296.160447

Rights and Permissions

Background: Polysaccharide isolated from Bletilla striata, a well known traditional Chinese medicine (Bletilla striata polysaccharide [BSP]) has been found to play important roles in endothelial cells proliferation, inducible nitric oxide stimulation, wound healing acceleration and other processes. Recent studies found that B. striata has anti oxidative properties, however, potential anti aging effects of BSP in whole organisms has not been characterized. Objective: To investigate whether BSP has anti aging effects on Caenorhabditis elegans. Materials and Methods: After treatment with BSP, the lifespan, locomotion ability, and stress resistance of C. elegans was determined. To provide insight into the underlying mechanism for the anti aging effect of BSP, we measured its effect on bacterial growth, brood size of C. elegans, and the insulin/insulin like growth factor (IGF) signaling pathway. Results: After BSP treatment, the lifespan of C. elegans was extended, and its locomotion ability and stress resistance were increased. BSP was found to have no effect on bacterial growth or on reproduction of C. elegans, However, mRNA levels of age-1 and hcf-1 were reduced after BSP treatment. Additionally, we observed that BSP did not extend the lifespan of daf 16 mutant animals. Conclusion: BSP produces an anti aging effect on C. elegans through the insulin/IGF signaling pathway and holds promise for future development as a functional food.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2900    
    Printed69    
    Emailed1    
    PDF Downloaded19    
    Comments [Add]    
    Cited by others 8    

Recommend this journal