Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2015  |  Volume : 11  |  Issue : 42  |  Page : 53-59

Assay method for quality control and stability studies of a new anti-diabetic and anti-dyslipidemic flavone (S002-853)*


1 Division of Pharmaceutics, Central Drug Research Institute, Lucknow, Uttar Pradesh, India
2 Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow, Uttar Pradesh, India

Correspondence Address:
Dr. Anil Kumar Dwivedi
Division of Pharmaceutics, Central Drug Research Institute, BS 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow - 226 021, Uttar Pradesh
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.157689

Rights and Permissions

Background: Flavonoid-rich extract of the plant is long known for its anti-diabetic activities in traditional medicine. S002-853, a new flavone derivative synthesized by Central Drug Research Institute (CDRI) has been used for the present study. Objectives: The present study aimed at development of an assay method for quality control (QC) and stability studies of a new anti-diabetic and anti-dyslipidemic agent CDRI compound S002-853. Materials and Methods: A validated high-performance liquid chromatography analysis method for S002-853 was developed for in process QC and stability studies. The separation was achieved on a RP-C18 (25 cm × 0.4 cm, 5 μm, Phenomenex) at 240 nm with flow rate of 1.0 ml/min. This method was applied successfully in establishing forced degradation and drug-excipient testing protocols as per International Conference on Harmonization guidelines. Results: The result of estimation and stress testing studies indicated a high degree of selectivity of this method. S002-853 was most stable at pH 7 and under photolytic conditions. The temperature degradation pattern of S002-853 was found to follow the zero order degradation. Conclusion: The method described is easy and simple hence can be easily reproduced. This method can be very useful for bulk manufacture QC, and drug development process.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1528    
    Printed55    
    Emailed0    
    PDF Downloaded14    
    Comments [Add]    

Recommend this journal