Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2015  |  Volume : 11  |  Issue : 42  |  Page : 311-319

Effects of Pogostemon cablin Blanco extract on hypoxia induced rabbit cardiomyocyte injury


1 Department of Medicine, College of Medicine, Dongguk University, Ilsan 305-701, Korea
2 Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-701, Korea
3 Department of Nursing, School of Public Health, Far East University, Chungbuk 369-700, Korea
4 Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 626-870, Korea

Correspondence Address:
Su-In Cho
School of Korean Medicine, Pusan National University, Beomeori, Mulgeum eup, Yangsan, Gyeongnam 626-870
Korea
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.153084

Rights and Permissions

Background: Pogostemonis Herba, the dried aerial part of Pogostemon cablin Blanco, is a well-known materia medica in Asia that is widely used for syndrome of gastrointestinal dysfunctions. Objective: This study was undertaken to examine whether Pogostemon cablin extract (PCe) might have any beneficial effect on hypoxia induced rabbit cardiomyocyte injury. Materials and Methods: Isolated cardiomyocytes were divided into three groups and the changes of cell viability in cardiomyocytes of hypoxic and hypoxia/reoxygenation group were determined. The effect of PCe on reactive oxygen species (ROS) generation, intracellular formation of ROS was also measured by monitoring the 2',7'- dichlorofluorescein fluorescence. Results: PCe effectively protected the cells against both the hypoxia and reoxygenation induced injury, and the protective effect of PCe is not mediated by interaction with adenosine triphosphate-sensitive K + channels. In the presence of PCe, production of ROS under chemical hypoxia was remarkably reduced which suggests that PCe might exert its effect as a ROS scavenger. Conclusion: The present study provides clear evidence for the beneficial effect of PCe on cardiomyocyte injury during hypoxia or reoxygenation following prolonged hypoxia.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2575    
    Printed31    
    Emailed0    
    PDF Downloaded14    
    Comments [Add]    
    Cited by others 2    

Recommend this journal