Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2015  |  Volume : 11  |  Issue : 42  |  Page : 29-36

Antimutagenic potential of harpagoside and Harpagophytum procumbens against 1-nitropyrene


1 Department of Biogenotoxicology, Human Health and Environment, Mediterranean Institute of Biodiversity and Ecology, Faculty of Medicine, Aix-Marseille University, 27 Bd Jean Moulin, Marseille Cedex 5, France
2 Laboratory of Pharmacognosy and Ethnopharmacology, Faculty of Pharmacy, Aix-Marseille University, 27 Bd Jean Moulin, Marseille Cedex 5, France

Correspondence Address:
Dr. Luigi Manon
Biogenotoxicology, Mediterranean Institute of Biodiversity and Ecology, 27 Bd Jean Moulin, 13385, Marseille Cedex 5
France
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.157675

Rights and Permissions

Background: 1-nitropyrene (1-NPy) is one of the most abundant nitro-polycyclic aromatic hydrocarbons particularly in diesel exhausts. It is a mutagenic and carcinogenic pollutant very widespread in the environment. So the discovery of antimutagenic agents is essential. Harpagophytum procumbens (HP) is traditionally used as anti-inflammatory and analgesic particularly against painful osteoarthritis. Harpagoside (HS), its major iridoid glycoside, is considered as the main active component. Objective: The aim of the present study was to evaluate the antimutagenic activity of HS and HP extracts against mutagenic activity of 1-NPy. Materials and Methods: The antimutagenic activity was investigated using the in vitro cytokinesis-block micronucleus assay in cultured human lymphocytes. Cells were exposed to HS or HP extracts before (pretreatment), during (co-treatment), and after (posttreatment) treatment with 1-NPy. Results: Results showed that HS significantly reduced the mutagenicity of 1-NPy in pretreatment and particularly in co-treatment, whereas all HP extracts significantly reduced the genotoxicity in the three protocols. Conclusion: These results suggested that HS was strongly involved in antimutagenic activity of HP extracts in co-treatment, but other components in HP extracts participated in this activity in pre- and post-treatment.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1718    
    Printed27    
    Emailed0    
    PDF Downloaded15    
    Comments [Add]    
    Cited by others 1    

Recommend this journal