Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 


 
  Table of Contents  
ORIGINAL ARTICLE
Year : 2015  |  Volume : 11  |  Issue : 42  |  Page : 250-256  

Shikonin induces apoptosis in the human gastric cancer cells HGC-27 through mitochondria-mediated pathway


1 Department of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
2 Department of Pharmacology, School of Life Science and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
3 Department of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110004; Department of Pharmacology, School of Life Science and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
4 Department of Biochemistry and Molecular Biology, School of Life Science, Liaoning University, Shenyang, 110036, China
5 Department of Natural Product Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China

Date of Submission08-May-2014
Date of Acceptance09-Jun-2014
Date of Web Publication12-Mar-2015

Correspondence Address:
Xiuli Bi
School of Life science, Liaoning University, Shenyang 110036
China
Yue Hou
College of Life and Health Sciences, Northeastern University, Shenyang 110004
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.153074

Rights and Permissions
   Abstract 

Background: Gastric cancer (GC) is one of the most frequently occurring digestive tract cancers and fewer chemotherapeutic drugs for GC have shown promising results. In this study, we investigated the anti-tumor activity of shikonin, a natural compound isolated from the Chinese plant Lithospermum erythrorhizon, against the human GC cell line HGC-27. Materials and Methods: HGC-27 cells treated with shikonin at a concentration of 30μM or above showed significant growth inhibition compared to control cells. Shikonin-treated cells also underwent apoptosis as detected by flow cytometric analysis and microscopic examination of cellular morphology. Further investigation into the underlying mechanism of apoptosis by western blot showed that the shikonin promoted the activation of poly-(ADP-ribose)-polymerase, caspase-3 and caspase-9 following 24 h or 48 h of treatment time, as well as the activation of caspase-8, but only after 48 h of treatment time. Furthermore, the levels of mitochondrial membrane potential, B-cell lymphoma 2 (Bcl-2) and Bcl-extra large were reduced following shikonin treatment while the level of Bax was increased. In addition, shikonin also caused a signifi cant reduction of the protein Survivin, while having little effect on the expression on X-linked inhibitor of apoptosis protein. Conclusion: Taken together, these results showed that the shikonin exhibited its anti-tumor activity against HGC-27 cells through inhibiting cell growth and promoting apoptosis by targeting mitochondrial-related signaling pathway. Our finding may represent a positive step in finding a natural and effective compound that could be important implication for future development of chemotherapeutic and/or chemopreventive agent against GC.

Keywords: Apoptosis, caspases, HGC-27 cells, mitochondrial pathway, shikonin


How to cite this article:
Hou Y, Xu J, Liu X, Xia X, Li N, Bi X. Shikonin induces apoptosis in the human gastric cancer cells HGC-27 through mitochondria-mediated pathway. Phcog Mag 2015;11:250-6

How to cite this URL:
Hou Y, Xu J, Liu X, Xia X, Li N, Bi X. Shikonin induces apoptosis in the human gastric cancer cells HGC-27 through mitochondria-mediated pathway. Phcog Mag [serial online] 2015 [cited 2019 Nov 12];11:250-6. Available from: http://www.phcog.com/text.asp?2015/11/42/250/153074


   Introduction Top


Gastric cancer (GC) is one of the most frequently occurring digestive tract cancers. It has a poor prognosis and a high mortality rate worldwide. [1],[2],[3] In Asia and parts of South America in particular, GC is the most common epithelial malignancy and is a leading cause of cancer-related mortality. [4] Surgery plus chemotherapy remains the first-line of therapy. Despite rapid advances in surgical procedures and radiotherapy/chemotherapy, fewer chemotherapeutic drugs for GC have shown promising results. [5] So, there is an urgent need to search for and develop more effective anti-GC drugs. In recent years, compounds isolated from traditional Chinese herbs have been recognized as the most valuable resource in the development of novel and advanced cancer therapeutic drugs. [6],[7],[8],[9]

Shikonin [Figure 1], one of the major naphthoquinone pigments isolated from the Chinese plant Lithospermum erythrorhizon, [10] exhibits many biological activities such as anti-microbial, [11] anti-inflammatory, [12] and anti-tumor [13] activities. The anti-tumor activity of shikonin was first demonstrated in murine sarcoma-180. [14] Recently, accumulated evidences have shown that the shikonin exerts its anti-tumor activity mainly through inhibiting cell growth and inducing apoptosis. [15] We have previously reported that the shikonin can inhibit the proliferation of human breast cancer cells and induce apoptosis in vitro. [16] Shikonin also induces apoptosis in hepatocellular carcinoma cells via reactive oxygen species. [17] In human papillary thyroid carcinoma cells, shikonin induces apoptosis through mitochondrial pathway, [18] whereas in human glioma cell lines, shikonin induces apoptosis through multiple mechanisms, including the generation of reactive oxygen species, depletion of glutathione and disruption of mitochondrial transmembrane potential. [19] However, the anti-tumor activity of shikonin on GC cells has not yet been reported. Thus, the aim of the present study was to elucidate the effect of shikonin on human GC cells and explore the potential underlying mechanism of its action. The results demonstrated that the shikonin could inhibit the proliferation of the human gastric cancer cell line HGC-27, and promote apoptosis by targeting mitochondrial-related signaling pathways.
Figure 1: Structure of shikonin

Click here to view



   Materials and methods Top


0Reagents

Shikonin (purity > 98%) was obtained from the Beijing Institute of Biologic Products (Beijing, China). Fetal bovine serum (FBS) was purchased from TBD Biotechnology Development (Tianjin, China). RPMI 1640 was from Gibco (Grand Island, USA). Propidium iodide (PI), Hoechst-33258 and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were purchased from Sigma Chemical (St. Louis, MO, USA). Rhodamine-123 (Rh-123) was obtained from Molecular Probes (Eugene, OR, USA). The antibodies against poly-(ADP-ribose)-polymerase (PARP), caspase-3, caspase-9 and caspase-8 were purchased from Cell Signaling Technology (Beverly, MA). The antibodies against B-cell lymphoma 2 (Bcl-2), Bax, Bcl-extra large (Bcl-xL), Survivin, X-linked inhibitor of apoptosis protein (XIAP) and β-actin were from Santa Cruz Biotechnology (Santa Cruz, CA, USA).

Cell culture

HGC-27 cells were obtained from the Institute of Biochemistry and Cell Research, China Life Science Academy (Shanghai, China). The cells were cultured in RPMI 1640 supplemented with 10% FBS, penicillin (100 U/mL) and streptomycin (100 μg/mL) and maintained at 37°C in the presence of 5% CO 2 in a humidified atmosphere.

Cell growth inhibition assay

The growth inhibitory effect of shikonin on HGC-27 cells was measured by MTT assay as previously described. [16] In brief, the cells were seeded in 96-well plates at a density of 4 × 10 3 cells/well. After 12 h of incubation, the cells were treated with different concentrations (1, 3, 10, 30 and 100 μM) of shikonin. As a control group, dimethyl sulfoxide (DMSO) was added instead (final concentration of 0.1%). After 24 or 48 h, the cells were incubated with MTT (0.25 mg/ml) for 3 h at 37°C. The purple formazan crystals were dissolved by addition of 100 μl DMSO, and the absorbance of the plate was read at 490 nm using a plate reader.

Flow cytometric analysis

HGC-27 cells (1 × 10 6 cells) were harvested and washed once in cold phosphate buffered saline (PBS). The cell pellets were fixed in 70% ethanol and washed in cold PBS, and then suspended in PI solution (1 mL) containing 50 μg/mL of PI, 0.1% (w/v) sodium citrate, 0.1% (v/v) triton X. The samples were incubated at 4°C in the dark and analyzed by a FACScan flow cytometer (Becton Dickinson). [16]

Morphological changes

After treatment with shikonin, HGC-27 cells were harvested by trypsinization and washed twice with PBS. The cells were fixed with 3.7% paraformaldehyde for 2 h at room temperature, washed once with PBS, and then stained with 167 μM Hoechst-33258 for 30 min at 37°C. At the end of the incubation, the cells were washed and resuspended in PBS. The nuclear morphology of the cells was observed under a fluorescence microscope. [20]

Measurement of mitochondrial membrane potential

Mitochondrial membrane potential (MMP) was assessed by the retention of Rh-123, a membrane-permeable fluorescent cationic dye. [21] Briefly, cells treated with various concentrations of shikonin were collected and washed with PBS followed by incubation with 0.5 μg/mL Rh-123 in the dark for 30 min at 37°C. The cells were then washed with PBS and analyzed by FACScan with excitation and emission wavelength of 495 and 535 nm, respectively. [21],[22]

Determination of protein changes

Western blot analysis for detecting the changes in the levels of certain proteins was performed using cells that had been treated with shikonin (0, 3, 10, and 30 μM) for both 24 and 48 h. Cells were lysed with radio immune precipitation assay buffer (50 mM Tris-HCl, 150 mM NaCl, 0.1% sodium dodecyl sulfate [SDS], 1% NP-40, 0.5% sodium deoxycholate, 1 mM phenylmethyl sulfonyl fluoride, 100 μM leupeptin, and 2 μg/ml aprotinin, pH 8.0) and samples of the extract (50 μg total protein) were resolved in 8-12% SDS-polyacrylamide gels. After electrophoresis, the proteins in the gels were transferred to nitrocellulose membranes, and the membranes were stained with 0.2% Ponceau S red to assure equal protein loading and transferring. The membranes were blocked with 5% nonfat milk, followed by incubation with the appropriate primary antibody at 4°C for overnight. The membranes were incubated with horseradish peroxidase-conjugated secondary antibody. Positive bands were visualized using enhanced chemiluminescence Western blotting detection reagents (Amersham Biosciences, UK). [21],[22]

Data analysis

Data were expressed as mean ± SEM of three experiments. Statistical significance (P < 0.05) was assessed by one-way ANOVA followed by Dunnett's t-test (SPSS 13.0 software, SPSS, Chicago, IL, USA).


   Results Top


0Shikonin exhibited growth inhibitory activity against HGC-27 cells

The effect of shikonin on the growth of HGC-27 cells was investigated by MTT assay. Shikonin inhibited the growth of HGC-27 cells in a concentration-dependent manner [Figure 2]. Compared to control cells, significant inhibition occurred only at 10 μM and above. At 100 μM shikonin (the highest concentration tested), about 85% of growth was inhibited in the case of 24 h and exposure and 90% when the exposure time was increased to 48 h. Much more intense growth inhibition was also obtained at 48 h compared to 24 h when 30 μM shikonin was used (20% vs. 60%). Thus, the anti-growth effect of shikonin against HGC-27 cells also exhibited a time-dependent effect. The IC 50 of a 24 h and 48 h time course for HGC-27 cells was 47.70 μM and 25.78 μM, respectively.
Figure 2: Growth inhibition of HGC-27 cells by shikonin. HGC-27 cells were treated with different concentrations (1, 3, 10, 30 or 100 μM) of shikonin for 24 h and 48 h. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cell viability was expressed as a percentage of surviving cells relative to control cells (no treatment). Data are the mean ± SEM of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001 compared to control cells

Click here to view


Shikonin induced apoptosis in HGC-27 cells

To determine whether the growth-inhibition effect exerted on HGC-27 cells was also accompanied with apoptosis, shikonin-treated cells were subjected to flow cytometry analysis complemented with PI staining. For cells that were treated with 30 μM shikinon for 24, 48 and 72 h, the characteristic hypodiploid DNA content peak (subG1) could be seen. These cells also showed an increase in the percentage of subG1 cells from 2.98% in the case of control to 12.87%, 25.90%, and 41.27% in the case of 24-, 48- and 72-h exposure to shikinon, respectively [Figure 3]a.
Figure 3: Shikonin-induced apoptosis in HGC-27 cells. (a) Sub-G1 DNA content in HGC-27 cells as analyzed by flow cytometry after treatment without or with shikonin. (b) Morphology of HGC-27 cells following treatment without or with shikonin. Cells were first stained with Hochest-33258 and then observed under a fluorescence microscope

Click here to view


Hoechst-33258 fluorescence-staining confirmed that the shikonin-treated cells underwent apoptosis, and morphological changes that are associated with apoptosis, such as chromatin condensation and formation of apoptotic bodies were all clearly visible [Figure 3]b.

Shikonin activates caspases and decreases mitochondrial membrane potential level in HGC-27 cells

Since caspases are known to play critical roles in the initiation and maintenance of apoptosis, [23] activation of caspases was used to explore the mechanism of shikonin-induced apoptosis in HGC-27 cells. As shown in [Figure 4]a, shikonin (3, 10, 30 μM) treatment resulted in the activation of PARP and caspase-3 after 24 h and 48 h, as indicated by the presences of cleaved fragments of both enzymes. Moreover, caspase-9, acting on the mitochondrial pathway, was also activated in HGC-27 cells after treatment with shikonin for 24 h and 48 h, whereas caspase-8 was activated only after 48 h of treatment with the same concentrations of shikonin. Since the activation of caspase-9 is linked to the loss of MMP, [21],[24] we also examined the effect of shikonin on the level of MMP using flow cytometry after staining the cells with the cationic dye Rh-123 in HGC-27 cells. Obvious decrease in MMP level was evident in shikonin-treated HGC-27 cells, and the decrease appeared to exhibit a time-dependent manner [Figure 4]b.
Figure 4: Effects of shikonin on the levels of poly-(ADP-ribose)-polymerase (PARP), caspases and mitochondrial membrane potential (MMP) in HGC-27 cells. (a) Changes in the levels of activated PARP, caspase-3, caspase-8 and caspase-9. HGC-27 cells were treated with shikonin (3, 10 or 30 ìM) for 24 h or 48 h, and the total proteins were extracted and analyzed by Western blot analysis. (b) Changes in the level of MMP. HGC-27 cells were treated with shikonin (30 ìM) for 6, 12, 24 and 48 h. Disruption of MMP was determined according to changes in fluorescence density using rhodamine-123

Click here to view


Effect of shikonin on the levels of B-cell lymphoma 2 family, X-linked inhibitor of apoptosis protein and Survivin

To examine the relationship between shikonin treatment and mitochondrial disruption, changes in the levels of members of the Bcl-2 family proteins were investigated. [25] Proteins of the Bcl-2 family play a critical role in the mitochondrial-dependent activation of caspases. As shown in [Figure 5], the levels of Bcl-2 and Bcl-xL in HGC-27 cells were reduced following shikonin treatment while the level of Bax was increased. This suggested that the activation of the mitochondrial pathway might be caused by the upregulation of Bax and downregulation of Bcl-2 and Bcl-xL following exposure to shikonin.
Figure 5: Effect of shikonin on apoptosis related proteins. HGC-27 cells were treated with shikonin (3, 10 and 30 ìM) for 24 h and 48 h. Total cell lysates or cytosolic fractions were prepared and the levels of B-cell lymphoma 2 family proteins as well as of Surivin and XIAP were determined by western blot

Click here to view


In addition, the protein levels of XIAP and Survivin, both of which are inhibitors of caspase-9 and caspase-3, [26] were also investigated. Shikonin significantly reduced the protein level of Survivin while having little effect on the level of XIAP [Figure 5] consistent with the data obtained for caspase-9 and caspase-3.


   Discussion Top


Tumors are diseases resulting primarily from cell proliferation disorder and obstruction of cell apoptosis. Thus, finding compounds that can induce cell apoptosis would be important in the search for potential chemotherapeutic agents. [21],[27],[28] Of particular interest are potential anti-cancer compounds from natural sources, because these compounds are considered safe. [29],[30] The present study demonstrated for the first time that the natural product shikonin was able to inhibit the proliferation of human gastric cancer HGC-27 cells and induce these cells to undergo apoptosis.

Apoptosis, a biological process that removes cancerous or virally infected cells from the body of an animal can be triggered through two classical apoptosis signaling pathways: The extrinsic pathway (death receptor pathway) and the intrinsic pathway (the mitochondrial pathway). [31] It is executed by caspases, a family of intracellular aspartate-specific cysteine proteases, which amplify the apoptotic signal and proteolytically process numerous cellular target molecules with different functions. [32],[33] The multiple apoptotic stimuli can activate upstream caspase-9 and/or caspase-8, and the activated caspase-9 and/or 8 in turn cleave and activate the executioner caspase-3. [34] Following the activation of caspase-3, some specific substrates of this enzyme, such as PARP are cleaved, eventually leading to apoptosis. [21],[35] Shikonin treatment resulted in the formation of active cleaved fragments of PARP, caspase-3, caspase-8 and caspase-9 in a concentration-and time-dependent manner. The fact that caspase-9 was cleaved earlier than caspase-8 after shikonin treatment indicated that caspase-9, rather than caspase-8, might play an important role in shikonin-induced apoptosis. Cleavage of caspase-9 plays a key role in the mitochondria-associated apoptotic pathway while caspase-8 is usually activated through the death receptor-mediated pathway. [31] The result of the current study suggested that the shikonin probably induced apoptosis in GC cells mainly through the mitochondrial-related pathway.

The activation of caspase-9, which is closely linked to the loss of MMP, [36] was also confirmed by the ability of shikonin to decrease the level of MMP in HGC-27 cells treated with this compound [Figure 4]b.

The intrinsic apoptotic pathway hinges on the balance of activity between pro- and anti-apoptotic members of the Bcl-2 superfamily proteins, which act to regulate the permeability of the mitochondrial membrane as well as the activation of caspases-9. [31],[37],[38],[39],[40] Among these Bcl-2 family proteins, Bcl-2 can stabilize the mitochondria permeability to prevent the release of cytochrome c and activation of caspase-9, whereas Bax interacts with pore proteins on the mitochondrial membrane to increase the membrane permeability, which leads to the release of cytochrome c from mitochondria, activation of caspase-9 and initiation of the caspase-activation pathway to initiate apoptosis. [21],[34] Here, we observed that the shikonin induced the down-regulation of Bcl-2 and up-regulation of Bax in HGC-27 cells. In addition, the level of anti-apoptosis proteins Bcl-xL was also down-regulated after treatment with shikonin. These results suggested that the shikonin-induced down-regulation of MMP level and activation of caspase-9 and caspase-3 were due, at least in part, to the disruption of a balance between Bax and Bcl-2, as well as the down-regulation of Bcl-xL.

The inhibitors of apoptosis (IAP) are a family of functionally-and structurally-related proteins, which serve as endogenous IAP. [41] The best-characterized IAPs are XIAP and Survivin, which inhibit caspase activation, thereby leading to negative regulation of apoptosis. [42],[43] Shikonin could decrease the expression levels of Survivin in vitro [Figure 5]. Taken together, the data demonstrated that, besides directly activating caspase-3 and caspase-9, the down-regulation of Survivin might be an additional mechanism by which shikonin might induce apoptosis in HGC-27 cells.


   Summary Top


The present study demonstrated for the first time that the shikonin could inhibit the proliferation of the human gastric cancer cells, HGC-27, probably through inducing apoptosis by targeting mitochondrial-related signaling pathway, which included the down-regulation of Bcl-2, Bcl-xL and Surivin, as well as the up-regulation of Bax. These findings suggested that the shikonin could potentially be considered as a chemotherapeutic and/or chemopreventive agent for GC. Further study that addresses the anti-tumor activity of shikonin in an animal model will provide greater support for the potential usefulness of this compound as an anti-GC drug.


   Acknowledgments Top


This research is supported by the National Natural Science Foundation of China (81102432), the Fundamental Research Funds for the Central Universities (N130420004, N130120001), Training Program Foundation for the Distinguished Young Scholars of University in Liaoning Province (LJQ2012088) and Fund for long-term training of young teachers in Shenyang Pharmaceutical University (ZCJJ2013409).

 
   References Top

1.
Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69-90.  Back to cited text no. 1
    
2.
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin 2012;62:10-29.  Back to cited text no. 2
    
3.
Yuan X, Zhou Y, Wang W, Li J, Xie G, Zhao Y, et al. Activation of TLR4 signaling promotes gastric cancer progression by inducing mitochondrial ROS production. Cell Death Dis 2013;4:e794.  Back to cited text no. 3
    
4.
Li ZM, Pu YW, Zhu BS. Blockade of NF-kB nuclear translocation results in the inhibition of the invasiveness of human gastric cancer cells. Oncol Lett 2013;6:432-436.  Back to cited text no. 4
    
5.
Sun KW, Ma YY, Guan TP, Xia YJ, Shao CM, Chen LG, et al. Oridonin induces apoptosis in gastric cancer through Apaf-1, cytochrome c and caspase-3 signaling pathway. World J Gastroenterol 2012;18:7166-74.  Back to cited text no. 5
    
6.
Chen S, Flower A, Ritchie A, Liu J, Molassiotis A, Yu H, et al. Oral Chinese herbal medicine (CHM) as an adjuvant treatment during chemotherapy for non-small cell lung cancer: A systematic review. Lung Cancer 2010;68:137-45.  Back to cited text no. 6
    
7.
Wu T, Yang X, Zeng X, Eslick GD. Traditional Chinese medicinal herbs in the treatment of patients with esophageal cancer: A systematic review. Gastroenterol Clin North Am 2009;38:153-67, x.  Back to cited text no. 7
    
8.
Molassiotis A, Potrata B, Cheng KK. A systematic review of the effectiveness of Chinese herbal medication in symptom management and improvement of quality of life in adult cancer patients. Complement Ther Med 2009;17:92-120.  Back to cited text no. 8
    
9.
Zhu AK, Zhou H, Xia JZ, Jin HC, Wang K, Yan J, et al. Ziyuglycoside II-induced apoptosis in human gastric carcinoma BGC-823 cells by regulating Bax/Bcl-2 expression and activating caspase-3 pathway. Braz J Med Biol Res 2013;46:670-5.  Back to cited text no. 9
    
10.
Chang IC, Huang YJ, Chiang TI, Yeh CW, Hsu LS. Shikonin induces apoptosis through reactive oxygen species/extracellular signal-regulated kinase pathway in osteosarcoma cells. Biol Pharm Bull 2010;33:816-24.  Back to cited text no. 10
    
11.
Sasaki K, Abe H, Yoshizaki F. In vitro antifungal activity of naphthoquinone derivatives. Biol Pharm Bull 2002;25:669-70.  Back to cited text no. 11
    
12.
Tanaka S, Tajima M, Tsukada M, Tabata M. A comparative study on anti-inflammatory activities of the enantiomers, shikonin and alkannin. J Nat Prod 1986;49:466-9.  Back to cited text no. 12
    
13.
Chen X, Yang L, Oppenheim JJ, Howard MZ. Cellular pharmacology studies of shikonin derivatives. Phytother Res 2002;16:199-209.  Back to cited text no. 13
    
14.
Sankawa U, Ebizuka Y, Miyazaki T, Isomura Y, Otsuka H. Antitumor activity of shikonin and its derivatives. Chem Pharm Bull (Tokyo) 1977;25:2392-5.  Back to cited text no. 14
    
15.
Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, et al. Anti-cancer natural products isolated from Chinese medicinal herbs. Chin Med 2011;6:27.  Back to cited text no. 15
    
16.
Hou Y, Guo T, Wu C, He X, Zhao M. Effect of shikonin on human breast cancer cells proliferation and apoptosis in vitro. Yakugaku Zasshi 2006;126:1383-6.  Back to cited text no. 16
    
17.
Gong K, Li W. Shikonin, a Chinese plant-derived naphthoquinone, induces apoptosis in hepatocellular carcinoma cells through reactive oxygen species: A potential new treatment for hepatocellular carcinoma. Free Radic Biol Med 2011;51:2259-71.  Back to cited text no. 17
    
18.
Liu C, Yin L, Chen J, Chen J. The apoptotic effect of shikonin on human papillary thyroid carcinoma cells through mitochondrial pathway. Tumour Biol 2014;35:1791-8.  Back to cited text no. 18
    
19.
Chen CH, Lin ML, Ong PL, Yang JT. Novel multiple apoptotic mechanism of shikonin in human glioma cells. Ann Surg Oncol 2012;19:3097-106.  Back to cited text no. 19
    
20.
Ma EL, Zhao DM, Li YC, Cao H, Zhao QY, Li JC, et al. Activation of ATM-Chk2 by 16-dehydropregnenolone induces G1 phase arrest and apoptosis in HeLa cells. J Asian Nat Prod Res 2012;14:817-25.  Back to cited text no. 20
    
21.
Ma E, Li Y, Zhang W, Wang X, Tai W, Li T, et al. 2(+/-)-7,8,3',4',5'- Pentamethoxyflavan induces G2/M phase arrest and apoptosis in HL60 cells. Toxicol In Vitro 2009;23:874-9.  Back to cited text no. 21
    
22.
Zhang H, Yang JY, Zhou F, Wang LH, Zhang W, Sha S, et al. Seed Oil of Brucea javanica induces apoptotic death of acute myeloid leukemia cells via both the death receptors and the mitochondrial-related pathways. Evid Based Complement Alternat Med 2011;2011:965016.  Back to cited text no. 22
    
23.
Nicholson DW, Thornberry NA. Caspases: Killer proteases. Trends Biochem Sci 1997;22:299-306.  Back to cited text no. 23
    
24.
Brenner C, Kroemer G. Apoptosis. Mitochondria - The death signal integrators. Science 2000;289:1150-1.  Back to cited text no. 24
    
25.
Borner C. The Bcl-2 protein family: Sensors and checkpoints for life-or-death decisions. Mol Immunol 2003;39:615-47.  Back to cited text no. 25
    
26.
Mohapatra S, Chu B, Zhao X, Pledger WJ. Accumulation of p53 and reductions in XIAP abundance promote the apoptosis of prostate cancer cells. Cancer Res 2005;65:7717-23.  Back to cited text no. 26
    
27.
Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001;411:342-8.  Back to cited text no. 27
    
28.
Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995;267:1456-62.  Back to cited text no. 28
    
29.
Sherr CJ. Principles of tumor suppression. Cell 2004;116:235-46.  Back to cited text no. 29
    
30.
Bi X, Zhao Y, Fang W, Yang W. Anticancer activity of Panax notoginseng extract 20(S)-25-OCH3-PPD: Targetting beta-catenin signalling. Clin Exp Pharmacol Physiol 2009;36:1074-8.  Back to cited text no. 30
    
31.
Li S, Tai W, Li Y, Zhang L, Zhang W, Ma E, et al. 1-(3',4',5'- Trimethoxyphenyl)-3-(3'',4''- dimethoxy-2''- hydroxyphenyl)- propane with microtubule-depolymerizing ability induces G2/M phase arrest and apoptosis in HepG2 cells. Chem Biol Interact 2010;188:161-70.  Back to cited text no. 31
    
32.
Cohen GM. Caspases: The executioners of apoptosis. Biochem J 1997;326:1-16.  Back to cited text no. 32
    
33.
Wu Z, Wu L, Li L, Tashiro S, Onodera S, Ikejima T. p53-mediated cell cycle arrest and apoptosis induced by shikonin via a caspase-9-dependent mechanism in human malignant melanoma A375-S2 cells. J Pharmacol Sci 2004;94:166-76.  Back to cited text no. 33
    
34.
Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999;274:11549-56.  Back to cited text no. 34
    
35.
Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91:479-89.  Back to cited text no. 35
    
36.
Gottlieb E, Armour SM, Harris MH, Thompson CB. Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 2003;10:709-17.  Back to cited text no. 36
    
37.
Youle RJ, Strasser A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008;9:47-59.  Back to cited text no. 37
    
38.
Coultas L, Strasser A. The role of the Bcl-2 protein family in cancer. Semin Cancer Biol 2003;13:115-23.  Back to cited text no. 38
    
39.
Lavrik IN, Golks A, Krammer PH. Caspases: Pharmacological manipulation of cell death. J Clin Invest 2005;115:2665-72.  Back to cited text no. 39
    
40.
Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309-12.  Back to cited text no. 40
    
41.
Gyrd-Hansen M, Meier P. IAPs: From caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer 2010;10:561-74.  Back to cited text no. 41
    
42.
Kashkar H. X-linked inhibitor of apoptosis: A chemoresistance factor or a hollow promise. Clin Cancer Res 2010;16:4496-502.  Back to cited text no. 42
    
43.
Altieri DC. Survivin and IAP proteins in cell-death mechanisms. Biochem J 2010;430:199-205.  Back to cited text no. 43
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5]


This article has been cited by
1 Targeting cancer cell mitochondria as a therapeutic approach: recent updates
Qingbin Cui,Shijun Wen,Peng Huang
Future Medicinal Chemistry. 2017; 9(9): 929
[Pubmed] | [DOI]
2 Anti-cancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction–mediated apoptosis
Tae Kwun Ha,Inae Jung,Mi Eun Kim,Sung Kwon Bae,Jun Sik Lee
Biomedicine & Pharmacotherapy. 2017; 91: 378
[Pubmed] | [DOI]
3 Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species
Wenquan Liang,Aizhen Cai,Guozhu Chen,Hongqing Xi,Xiaosong Wu,Jianxin Cui,Kecheng Zhang,Xudong Zhao,Jiyun Yu,Bo Wei,Lin Chen
Scientific Reports. 2016; 6: 38267
[Pubmed] | [DOI]
4 Shikonin causes apoptosis by up-regulating p73 and down-regulating ICBP90 in human cancer cells
Soon Young Jang,Darong Hong,Seo Young Jeong,Jong-Ho Kim
Biochemical and Biophysical Research Communications. 2015; 465(1): 71
[Pubmed] | [DOI]



 

Top
   
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and me...
   Results
   Discussion
   Summary
   Acknowledgments
    References
    Article Figures

 Article Access Statistics
    Viewed3349    
    Printed42    
    Emailed0    
    PDF Downloaded14    
    Comments [Add]    
    Cited by others 4    

Recommend this journal