Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2015  |  Volume : 11  |  Issue : 42  |  Page : 1-5

Cytotoxic glucosphingolipid from Celtis Africana


1 Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 2457, Riyadh 11451, Saudi Arabia
2 Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 2457, Riyadh 11451, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
3 Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
4 Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad-22060, Pakistan
5 Institute for Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Duesseldorf, Universitaets street 1, 40225 Duesseldorf, Germany

Correspondence Address:
Dr. Shagufta Perveen
Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 2457, Riyadh 11451
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.157662

Rights and Permissions

Background: Literature survey proved the use of the powdered sun-dried bark and roots of Celtis africana for the treatment of cancer in South Africa. Objective: The aim of this study was to do further isolation work on the ethyl acetate fraction and to investigate the cytotoxic activities of the various fractions and isolated compound. Materials and Methods: Cytotoxicity of petroleum ether, chloroform, ethyl acetate, n-butanol fractions and compound 1 were tested on mouse lymphoma cell line L5178Y using the microculture tetrazolium assay. Results: One new glucosphingolipid 1 was isolated from the aerial parts of C. africana. The structure of the new compound was determined by extensive analysis by one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy and mass spectrometry. The ethyl acetate fraction and compound 1 showed strong cytotoxic activity with an EC 50 value of 8.3 μg/mL and 7.8 μg/mL, respectively, compared with Kahalalide F positive control (6.3 μg/mL). Conclusion: This is the first report of the occurrence of a cytotoxic glucosphingolipid in family Ulmaceae.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2093    
    Printed35    
    Emailed0    
    PDF Downloaded16    
    Comments [Add]    
    Cited by others 2    

Recommend this journal