Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2015  |  Volume : 11  |  Issue : 42  |  Page : 117-122

Experimental treatment of breast cancer-bearing BALB/c mice by artemisinin and transferrin-loaded magnetic nanoliposomes


1 Department of Laboratory Sciences, Borujerd Branch, Islamic Azad University, Borujerd, Iran
2 Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
3 Department of Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran

Correspondence Address:
Dr. Amir Gharib
Department of Laboratory Sciences, Faculty of Medical Sciences, Borujerd Branch, Islamic Azad University, Modares Street, Borujerd 14515-775
Iran
Login to access the Email id

Source of Support: The author gratefully acknowledges financial support from the Iran National Science Foundation (INSF) under grant agreement no: 91001200., Conflict of Interest: None


DOI: 10.4103/0973-1296.157710

Rights and Permissions

Background: The combination of artemisinin and transferrin exhibits versatile anticancer activities. In previous, we successfully prepared artemisinin and transferrin-loaded magnetic nanoliposomes and evaluated their anti-proliferative activity against MCF-7 and MDA-MB-231 cell lines in vitro. In this study, we investigate the in vivo anti-breast cancer activity of artemisinin and transferrin-loaded magnetic nanoliposome against breast transplanted tumors in BALB/c mice model. Materials and Methods: Artemisinin and transferrin-loaded magnetic nanoliposomes were prepared and characterized for some physiochemical properties. Pieces of tumor tissue from the breast cancer-bearing BALB/c mice were transplanted subcutaneously to the syngeneic female BALB/c mice. In the presence of the external magnet that placed at the breast tumor site, the tissue distribution and tumor-suppressing effects of prepared nanoliposomes on tumor growth was evaluated. Results: The prepared nanoliposomes have fine spherical shape, rough surface, nano-sized diameter and magnetic properties. At 2 h after treatment, the intravenous administration of artemisinin and transferrin-loaded magnetic nanoliposomes followed using the magnetic field approximately produced 10- and 5.5-fold higher levels of artemisinin and transferrin in the tumors, respectively, compared with free artemisinin and transferrin. Moreover, in the presence of an external magnetic field, the prepared nanoliposomes could significantly induce apoptosis in the mice breast cancer cells as well as could reduce tumor volume in tumorized mice at 15 days after treatment. Conclusion: The data suggested that the artemisinin and transferrin-loaded magnetic nanoliposomes would be a good choice for the breast tumor-targeted therapy, due to its high targeting efficiency.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2107    
    Printed28    
    Emailed0    
    PDF Downloaded15    
    Comments [Add]    
    Cited by others 3    

Recommend this journal