Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 


 
  Table of Contents  
ORIGINAL ARTICLE
Year : 2015  |  Volume : 11  |  Issue : 41  |  Page : 191-195  

A New Lignan Glucoside from Lagochilus ilicifolius


1 The Ministry of Education (MOE), Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM), Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine; Shanghai R and D Center for Standardization of Chinese Medicines, Shanghai 201203, China
2 The Ministry of Education (MOE), Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM), Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Shanghai Key Laboratory of Complex Prescription, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China

Date of Submission14-Feb-2014
Date of Acceptance25-Apr-2014
Date of Web Publication21-Jan-2015

Correspondence Address:
Chou Gui-Xin
Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203
China
Xu Hong
Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.149738

Rights and Permissions
   Abstract 

Background: The whole herb of Lagochilus ilicifolius has been used as a folk medicine for treating hemostatic, inflammation and ulcer in China. There were only limited reports on its chemical constituents, and no reports on its pharmacology study. Objective: To isolate compounds from the whole herb of L. ilicifolius and evaluate their cytotoxic activity. Materials and Methods: The column chromatographic techniques were used for separating the constituents of the n-butanol-soluble fraction of the 95% ethanol extract from the whole plant of L. ilicifolius. The structures of one new lignan and two known lignans were elucidated on the basis of spectroscopic analyses and comparison with literature data. The cytotoxic activities of these three lignans were evaluated using the MTT-assay against PC12 cell line derived from rat adrenal pheochromocytoma. Results: The new lignan was identified as erythro-1-[(4-O-β-D-glucopyranosyl-3-methoxyl)- phenyl]-2-[(5'-methoxyl)-pinoresinol]-propane-1,3-diol (1), and two known lignans were identified as tortoside C (2) and sisymbrifolin (3). The new lignan exhibited significant cytotoxic activity against PC12 cell line with IC 50 value of 1.22 ± 0.03 μmol/L. Conclusions: A new lignan, erythro-1-[(4-O-β-D-glucopyranosyl -3-methoxyl)-phenyl]-2-[(5'-methoxyl)-pinoresinol]-propane-1,3-diol and two known lignans were isolated from the whole herbs of L. ilicifolius. The two known lignans were reported for the first time in the genus Lagochilus. Three lignans were evaluated for in vitro cytotoxic activity. The new lignan showed relatively strong cytotoxicity against PC12 cell line, while sisymbrifolin and tortoside C exibited no cytotoxicity.

Keywords: Cytotoxic activity, Labiatae, Lagochilus ilicifolius, lignans


How to cite this article:
Jing-Shi Q, Cheng-Gang Z, Wei W, Ting Z, Hong X, Gui-Xin C. A New Lignan Glucoside from Lagochilus ilicifolius. Phcog Mag 2015;11:191-5

How to cite this URL:
Jing-Shi Q, Cheng-Gang Z, Wei W, Ting Z, Hong X, Gui-Xin C. A New Lignan Glucoside from Lagochilus ilicifolius. Phcog Mag [serial online] 2015 [cited 2020 Feb 23];11:191-5. Available from: http://www.phcog.com/text.asp?2015/11/41/191/149738


   Introduction Top


The genus Lagochilus, belonging to Labiatae family, comprises 35 species distributed mainly in central Asia such as Turkistan, Iran, Afghanistan, Russian, Mongolia and China , of which 14 species have been found to distribute wild in China. [1],[2] Some plants in this genus, including L. inebrians and L. lanatonodus, are employed as infusion or tincture as antihemorrhagic for their hemostatic effects. [3],[4],[5] Some plants were also applied for the treatment of allergic dermatosis. [6],[7],[8] Previous phytochemical studies revealed the presence of diterpenoids, flavonoids, coumarins, iridoid glycosides and polysaccharides in this genus. [6],[7],[9],[10],[11],[12],[13],[14],[15],[16],[17],[18],[19],[20],[21],[22],[23],[24] Pharmacological results indicated that diterpenoids from this genus, including lagochiline and its derivatives, could have the ability of hemostatic. [20],[25]

L. ilicifolius, a folk medicine used for the treatment of hemostatic, inflammation and ulcer, distributes in northwest regions in China. [26] In our previous studies, we have described a lignan from this plant. [27] In a continued search for bioactive constituents from this plant, one new lignan, erythro-1-[(4-O-β- D- glucopyranosyl- 3- methoxyl)- phenyl]- 2- [(5'-methoxyl)-pinoresinol]-propane-1,3-diol (1, [Figure 1]), and two known lignans tortoside C (2, [Figure 1]) and sisymbrifolin (3, [Figure 1]), were isolated from the whole herbs of L. ilicifolius. In the present paper, the structure elucidation of the new lignan is reported.
Figure 1: Structure of isolated compounds 1-3 and selected HMBCs of the new lignan (compound 1)

Click here to view



   Materials and methods Top


General procedure and reagents Optical rotations were measured on a KRάSS P8000-T digital polarimeter. UV spectra were measured with a UV-1901 recording spectrophotometer (Beijing Puxi General Instrument Co., Ltd., Beijing, China). IR spectra were recorded on Nicolet TM -380 spectrophotometer from Thermo Electron. NMR spectra were recorded on Brucker AV-500 (Switerland, Bruker) with TMS as internal reference. HR-ESI-MS were obtained on Brucker APEXIII 7.0 TESLA FTMS (Switerland, Bruker).

Column chromatography (CC): silica gel (200-300 mesh, Qingdao Haiyang Chemical Co., Ltd., Qingdao, China), Sephadex LH-20 (GE-Healthcare Bio-Sciences AB, Uppsala, Sweden), D101 macroporous resin (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China), microporous resin (MCI) (75-150 μm, Mitsubishi Chemical Corporation, Tokyo, Japan) and octadecylsilyl (ODS) (40-60 μm, Sepax Technologies Inc., USA). All reagents were of analytical grade.

Plant materical

The whole herbs of L. ilicifolius were collected in Yinchuan, Ningxia, China, in July 2009. A voucher specimen (No. 2009001) was identified by Professor Xu Hong, and has been deposited in the herbarium of Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine.

Extraction and isolation

The whole herbs of L. ilicifolius (13 kg) were ground and exhaustively extracted with 95% ethanol at 80°C (for 2 h, 3 times). The solvent was evaporated in vacuo to yield a dry residue (489.8 g). The residue was then suspended in water and extracted successively with petroleum ether, dichloromethane and n-butanol to give four extracts including petroleum ether extract (163.0 g), dichloromethane extract (22.8 g), n-butanol extract (73.0 g) and H 2 O extract (231.0 g).

The n-butanol extract (73.0 g) was subjected to D101 column chromatography and eluted with H 2 O, 30% EtOH, 60% EtOH and 90% EtOH to give four fractions including Fr. H 2 O (54.0 g), Fr. 30% EtOH (12.0 g), Fr. 60% EtOH (5.0 g) and Fr. 90% EtOH (2.0 g).

Fr. 30% EtOH (12.0 g) was subjected to silica gel column chromatography and eluted by CH 2 Cl 2 -MeOH = 20:1 to yield Subfr. 1-2. Subfr. 1 was subsequently subjected to MCI and silica gel column chromatography (EtOAc-MeOH-H 2 O = 20:2:1) to afford compound tortoside C (2).

Fr. 60% (5.0 g) was subjected to MCI column chromatography to yield Subfr. 1-6. Subfr. 3 was subjected to Sephadex LH-20 column chromatography (eluted with MeOH) to afford compound sisymbrifolin (3). Subfr. 5 was subjected to silica gel (EtOAc- MeOH-H 2 O = 12:1:0.5) and ODS column chromatography (eluted with 40% MeOH), and further purified by Sephadex LH- 20 column chromatography (eluted with MeOH) to give compound erythro - 1- [(4 -O-β-D- glucopyranosyl-3- methoxyl)-phenyl]-2-[(5'-methoxyl)-pinoresinol]- propane -1,3-diol (1).

Cytotoxicity assay

PC12 cell line, derived from a rat pheochromocytoma, was obtained from the American Type Culture Collection (ATCC, Manassas, VA). The cells were maintained in Dulbecco's modified Eagles medium (DMEM) supplemented with 6% fetal bovine serum, 6% horse serum, 100 U/mL penicillin, and 100 mg/mL streptomycin at 37°C in a water-saturated 7.5% CO 2 incubator. Cultured PC12 cells in 96-well-plate (15,000 cells/well) were pre-treated with various concentrations (0.1, 0.3, 1, 3, 10, 30, 100 μM) for 48 h. Cell viability test was performed with the addition of thiazolyl blue tetrazolium bromide (MTT) (Sigma, USA) in PBS at a final concentration of 0.5 mg/mL for 1 h. After the solution was removed, the purple precipitate inside the cells was re-suspended in DMSO and then measured at 570 nm absorbance.


   Results Top


Compound 1 white amorphous solid (CH 3 OH), [α]-16.7(c, 0.191, CH 3 OH). UV (CH 3 OH) λmax : 291 nm. IR (KBr) n cm -1: 3 417, 2 930, 1 594, 1 514, 1 463, 1 422, 1 267, 1 224, 1 125, 1 075, 635. HR-ESI-MS: m/z 745.2711 [M-H] - (calcd. 746.2786). 1 H NMR and 13 C NMR data were shown in [Table 1].
Table 1: NMR chemical shifts of compound 1 (125 MHz for 13C and 500 MHz for 1H)


Click here to view


Compound 2 white amorphous solid (CH 3 OH). EI-MS: m/z 553 [M-H] - . 1 H NMR (Pyr, 500 MHz) δH :7.05 (2H, d, J = 13.5Hz, H-2', 6'), 5.06 (2H, J = 4.5Hz, H-2, 6), 4.13 (2H, dd, J = 9.0, 4.5Hz, H-4a, 8a), 4.02 (2H, dd, J = 4.5, 4.5Hz, H-4e, 8e), 3.88 (6H, s, 2 × OCH 3 ), 3.23-3.34 (H of sugar). 13 C NMR (Pyr, 125MHz) δC : 138.50 (C-5', 5"), 135.4 (C-4', 4"), 105.1 (C-glc-1), 105.0 (C-6', 6"), 86.4 (C-2, 6), 78.8 (C-glc-5), 78.5 (C-glc-3), 76.2 (C-4, 8), 72.4 (C-glc-2), 71.7 (C-glc-4), 62.7 (C-glc-6), 56.8 (OCH 3 ), 54.9 (C-1, 5). The 1 H and 13 C NMR data are in accordance with those in literature, [28] so compound 2 was identified as tortoside C.

Compound 3 white powder (CH 3 OH). EI-MS: m/z 393 [M-H] - . 1 H NMR (CD 3 OD, 500 MHz) δH : 6.85 (1H, d = 2.5 Hz, H-2), 6.85 (1H, s, H-2'), 6.84 (1H, s, H-6'), 6.81 (1H, dd, J = 8.5, 2.0 Hz, H-6), 6.67 (1H, d, H = 8.5 Hz, H-5), 5.44 (1H, d, J = 6.0 Hz, H-7), 4.48 (1H, d, J = 4.0 Hz, H-7'), 3.77 (3H, s, 3-OCH 3 ), 3.71 (3H, s, 3'-OCH 3 ), 3.75 (2H, m, H-9), 3.59 (1H, m, H-8'), 3.45 (1H, d, J = 11.0 Hz, H-9a'), 3.40 (1H, d, J = 6.0Hz, H-8), 3.32 (1H, d, J = 11.5Hz, H-9b'). 13 C NMR (CD 3 OD, 125MHz) δC : 136.9 (C-1), 110.5 (C-2), 147.5 (C-4), 116.1 (C-5), 119.6 (C-6), 89.1 (C-7), 55.3 (C-8), 64.8 (C-9), 129.7 (C-1'), 112.5 (C-2'), 145.2 (C-3'), 149.1 (C-4'), 134.6 (C-5'), 116.6 (C-6'), 75.3 (C-7'), 77.6 (C-8'), 64.2 (C-9'). The 1 H and 13 C NMR data are in accordance with those in literature, [29] so compound 3 was identified as sisymbrifolin.


   Discussion Top


Compound 1 was a white amorphous solid, [α]-16.7(c 0.191, CH 3 OH). The molecular formula was deduced as C 37 H 46 O 16 from negative HRESI-MS [M-H] - at m/z 745.2711. The UV spectrum displayed a maximum absorption at 291 nm (CH 3 OH). The IR spectrum showed the presence of hydroxyl at 3417 cm -1 , aromatic rings at 1594 and 1514 cm -1 and C-O-C bond at 1224 and 1075 cm -1 .

The NMR data [Table 1] showed that 1 contained two ABX spin systems assignable to two 1, 3, 4-trisubstituted benzene rings at δH 6.81 (1H, d, J = 8.5 Hz, H-5), 6.77 (1H, dd, J = 8.5, 1.5 Hz, H-6), and 6.94 (1H, d, J = 1.5 Hz, H-2); and 7.08 (1H, d, J = 8.5 Hz, H-5"), 6.88 (1H, d, J = 8.5, 1.5 Hz, H-6") and 7.04 (1H, d, J = 1.5 Hz, H-2"); two magnetic equivalent aromatic protons at δH 6.65 (2H, s) were indicative of one symmetrical 1, 3, 4, 5-tetrasubstituted benzene ring. The 1 H-NMR chemical shifts observed for the three benzene systems together with the presence of four aromatic methoxyl group signals at δH 3.85 (9H, s, 3'-OMe, 5'-OMe and 3-OMe) and 3.84 (3H, s, 3"-OMe) suggested the presence of two guaiacyl (3-methoxy-4-hydroxyphenyl) groups and one 3,5-dimethoxy-4-hydroxyphenyl in this compound. [30] In addition, the NMR spectral data of 1 also established one unit of β-glucose, a bis-tetrahydrofuran ring [31] and a propan-1, 2, 3-triol moiety. [32] Detailed analysis of the above data of 1 suggested that compound 1 was a sesquilignan monoglucoside consisting of (+)-medioresinol, [33] 3-(4-hydroxy-3-methoxyphenyl)-propan-1, 2, 3-triol and β-D-glucopyranose.

The NOESY correlation of the H-8" signal δH 4.25 (1H, brs) with the H-5 signal δH 6.81 (1H, d, J = 8.5 Hz) of the guaiacyl group in (+)-medioresinol indicated that 3-(4-hydroxy-3-methoxyphenyl)-propan-1, 2, 3-triol was connected to the C-4 position of (+)-medioresinol. The relatively small coupling constant of H-7" signal δH 4.90 (1H, d, J = 5.5 Hz) indicated that the glycerol moiety was in the erythro-configuration. [34] The attached position of β-D-glucopyranose was determined by the HMBC correlation of the anomeric proton at δH 4.86 (1H, d, J = 7.5 Hz) with the signal at δC 147.5 (C-4"). The NMR spectral data of 1 was similar to that of a known sesquilignan monoglucoside erythro- 1- (4-O-β-D-glucopyranosyl-3,5-dimethoxy-phenyl)-2-syringaresinoxyl- propane-l, 3-diol. [31] The only difference was that two methoxyl groups at δH 3.88 (5-OMe) and δH 3.84 (5′′-OMe) present in the known sesquilignan monoglucoside had disappeared in 1; instead, two aromatic proton signals were observed at δH 6.81 (1H, d, J = 8.5, H-5) and δH 7.08 (1H, d, J = 8.5, H-5′′). Based on similar chemical shifts and coupling constants of H-7 (δ 4.72, 1H, d, J = 4.5 Hz) and H-8 (δ 3.12, 1H, brs), H-7′ (δ 4.70, 1H, d, J = 4.5 Hz) and H-8′ (δ 3.12, 1H, brs) to those of erythro-1-(4-O-β-D-glucopyranosyl-3,5-dimethoxy- phenyl)-2-syringaresinoxyl-propane-l, 3-diol, the relative configuration of C-7, C-8, C-7′ and C-8′ of 1 was proposed to be the same as those of erythro-1-(4-O-β-D-glucopyranosyl-3,5-dimethoxy-phenyl)-2- syringaresinoxyl-propane-l, 3-diol with H-7, H-8, H-7′, H-8′ as b, a, b and a, respectively. [31] Therefore, compound 1 was identified as erythro-1-[(4-O-β-D-glucopyranosyl-3-methoxyl) phenyl]-2-[(5'- methoxyl)-pinoresinol]-propane-1,3-diol. [Figure 1].

Compound 1-3 were evaluated in vitro for cytotoxicity against PC12 cell line derived from a transplantable rat pheochromocytoma employing a MTT-assay. The new lignan (1) exhibited significant cytotoxicity with the IC 50 value of 1.22 ± 0.03 mol/L.


   Acknowledgments Top


This research was supported by a grant (No. 09405801700) from Science and Technology Commission of Shanghai Municipality.

 
   References Top

1.
Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita. Flora Reipublicae Popularis Sinicae. Vol. 65. Beijing, China: Science Press; 1977. p. 525-32.  Back to cited text no. 1
    
2.
Rechinger KH, Hedge IC. Lagochilus, In: Flora Iranica, Labiatae. Graz, Austria: Akademische Druck and Verlagsanatalt; 1982. p. 340-1.  Back to cited text no. 2
    
3.
Christian R. Marijuana medicine-a world tour of the healing and visionary powers of cannabis. Rochester, USA: Healing Arts Press; 2001. p. 79.  Back to cited text no. 3
    
4.
Akopow IE. Pharmacotherapy of hemophilia with the preparation of Lagochilus inebrians Bge. Folia Haematol Int Mag Klin Morphol Blutforsch 1971;95:72-83.  Back to cited text no. 4
[PUBMED]    
5.
Elaine P, Heather A, Allan Y. Neurochemsitry of consciousness: Neurotransmitters in mind. Amsterdam: Johan Benjamins Publishing; 2002. p. 221.  Back to cited text no. 5
    
6.
Ba H, Tolhen, Musadillin S, Wang BD, Zhu DY. Studies on the chemical constituents of Lagochilus lanatonodus. Nat Prod Res Dev 1997;9:44-8.  Back to cited text no. 6
    
7.
Panossian A, Wikman G. Pharmacology of Schisandra chinensis Bail: An overview of Russian research and uses in medicine. J Ethnopharmacol 2008;118:183-212.  Back to cited text no. 7
    
8.
Zainutdinov UN, Mavlyankulova ZI, Aslanov KH. A chemical study of Lagochilus pubescens. Chem Nat Compd 1975;11:287-8.  Back to cited text no. 8
    
9.
Mavlankulova ZI, Zainutdinov UN, Aslanov KH. 3,18-O-isopropylidinelagochilin from Lagochilus pubescens. Chem Nat Compd 1976;12:106-7.  Back to cited text no. 9
    
10.
Mavlyankulova ZI, Zainutdinov UN, Aslanov KH. Diterpenes of Lagochilus pubescens. Chem Nat Compd 1977;13:39-41.  Back to cited text no. 10
    
11.
Islamov R, Zainutdinov UN, Aslanov KH. Lagochilin 3-monoacetate from Lagochilus inebrians. Chem Nat Compd 1978;14:342-3.  Back to cited text no. 11
    
12.
Mavlankulova ZI, Zainutdinov UN, Kamaev FG, Aslanov KhA. Acetyllagochilins from Lagochilus pubescens and their investigation by PMR spectroscopy. Chem Nat Compd 1978;14:66-9.  Back to cited text no. 12
    
13.
Chizhov OS, Ryabokobylko YS, Kessenikh AV. NMR spectra of lagochilin. Bull Acad Sci USSR 1979;28:1482-4.  Back to cited text no. 13
    
14.
Nurmatova MP, Zainutdinov UN, Kamaev FG, Aslanov KA. Structure and configuration of a new diterpenoid lactone from Lagochilus hirsutissimus. Chem Nat Compd 1979;15:695-9.  Back to cited text no. 14
    
15.
Nasrullaev FD, Makhsudova BT. Flavonoids of Lagochilus platycalyx. Chem Nat Compd 1991;27:511-2.  Back to cited text no. 15
    
16.
Rakhimov DA, Malikova MK, Vakhabov AA, Ruziev IO, Abdurakhmanov TR. Plant polysaccharides I. polysaccharides of Lagochilus and their biological activity. Chem Nat Compd 1995;31:260-1.  Back to cited text no. 16
    
17.
Malikova MK, Rakhimov DA. Plant polysaccharides VIII. Polysaccharides of Lagochilus zeravschanicus. Chem Nat Compd 1997;33:438-40.  Back to cited text no. 17
    
18.
Rakhimov DA, Malikova MK, Vakhabov AA, Abdurakhmanov TR, Ruziev OI. Plant polysaccharides. I ×. Isolation and anticoagulant activity of the polysaccharides of Lagochilus usunachmaticus. Chem Nat Compd 1997;33:534-5.  Back to cited text no. 18
    
19.
Zainutdinov UN, Yunusov TK, Mavlyanov SA, Pulatova MP. In: Scientific Materials, International Workshop on Biotechnology Commercialization and Security. Tashkent; 2003. p. 83.  Back to cited text no. 19
    
20.
Zainutdinov UN, Islamov R, Dalimov DN, Abdurakhmanov TR, Matchanov OD, Vypova NL. Structure-activity relationship for hemostatic lagochilin diterpenoids. Chem Nat Compd 2002;38:161-3  Back to cited text no. 20
    
21.
Taban S, Masoudi S, Chalabian F, Delnavaz B, Rustaiyan A. Chemical composition and antimicrobial activities of the essential oils from flower and leaves of Lagochilus kotschyanus Boiss. A new species from Iran. J Med Plants 2009;8:58-63.  Back to cited text no. 21
    
22.
Furukawa M, Suzuki H, Makino M, Ogawa S, Iida T, Fujimoto Y. Studies on the constituents of Lagochilus leiacanthus (Labiatae). Chem Pharm Bull 2011;59:1535-40.  Back to cited text no. 22
    
23.
Gohari A, Barari E, Saeidnia S, Shakeri A, Motaghedi E. Phytochemical study of Lagochilus cabulicus Benth. Planta Med 2011;77:83-6.  Back to cited text no. 23
    
24.
Li GZ, Mishig M, Pu X, Yi JH, Zhang GL, Luo YG. Chemical components of aerial parts of Lagochilus ilicifolius. Chin J Appl Environ Biol 2012;18:924-7.  Back to cited text no. 24
    
25.
Bobokulov KM, Levkovich MG, Islamov AK. Quantitative determination by PMR spectroscopy of lagochilin in the substance and tablets of the medicinal preparation inebrin. Chem Nat Compd 2007;43:149-52.  Back to cited text no. 25
    
26.
Xinjiang Institute of Biology, Pedology and Desert Research Institute. Xinjiang Medicinal Flora. Vol. 3. Xinjiang, China: Xinjiang People's Publishing House; 1984. p. 146-52.  Back to cited text no. 26
    
27.
Qian JS, Zhang BF, Wang W, Liu Q, Wang CH, Jiao Y, et al. Chemical constituents of Lagochilus ilicifolius. Chin Tradit Herb Drugs 2012;43:869-72.  Back to cited text no. 27
    
28.
Wang CZ, Jia ZJ. Lignan, phenylpropanoid and iridoid glycosides from Pedicularis torta. Phytochemistry 1997;45:59-66.  Back to cited text no. 28
    
29.
Xie GH, Ma L, Zheng ZP, Hu LH. Lignans from Gardneria multiflora. Chin J Nat Med 2007;5:255-8.  Back to cited text no. 29
    
30.
Erdemoglu N, Sahin E, Sener B, Ide S. Structural and spectroscopic characteristics of two lignans from Taxus baccata L. J Mol Struct 2004;692:57-62.  Back to cited text no. 30
    
31.
Chang ZW, De QY. Lignan and acetylenic glycosides from Aster auriculatus. Phytochemistry 1998;48:711-7.  Back to cited text no. 31
    
32.
Tian JM, He HP, Di YT. Three new lignan glycosides from Mananthes patentiflora, J Asian Nat Prod Res 2008;10:228-32.  Back to cited text no. 32
    
33.
Yuan XH, Xu CX, Zhou M, Zhang XY, Li BG. Chemical constituents of Daphne tangutica. Nat Prod Res Dev 2007;19:55-8.  Back to cited text no. 33
    
34.
Miyase T, Ueno A, Takizawa N, Kobayashi H, Oguchi H. Studies on the glycosides of Epimedium grandiflorum M ORR . var. thunbergianum (M IQ .) N AKAI . II. Chem Pharm Bull 1987;35:3713-9.  Back to cited text no. 34
    


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1]



 

Top
   
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and me...
   Results
   Discussion
   Acknowledgments
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed1803    
    Printed36    
    Emailed0    
    PDF Downloaded14    
    Comments [Add]    

Recommend this journal