Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 


 
  Table of Contents  
ORIGINAL ARTICLE
Year : 2014  |  Volume : 10  |  Issue : 40  |  Page : 458-463  

Effects of ginsenosides-Rb 1 on exercise-induced oxidative stress in forced swimming mice


1 Department of Physical Education, Central South University, Changsha, Hunan 410083, China
2 Department of Sports and Arts, Zhejiang Yuexiu University of Foreign Languages, Shaoxing, Zhejiang 312000, China
3 Physical Education Institute, Xinxiang Polytechnic College, Xinxiang, Henan 453000, China

Date of Submission13-Aug-2013
Date of Acceptance24-Aug-2013
Date of Web Publication26-Sep-2014

Correspondence Address:
Bo Qi
No. 932, Lushan South Road, Yuelu, Changsha, Hunan 410083
China
Login to access the Email id

Source of Support: This work was supported by Science and Technology Development Foundation of Zhejiang Province of China (Grant No. 20110406),, Conflict of Interest: None


DOI: 10.4103/0973-1296.141818

Rights and Permissions
   Abstract 

Background: The fleshy root of Panax ginseng C.A. Meyer (ginseng) is one of the most well-known and valued herbs in traditional Chinese medicine. Ginsenosides are considered mainly responsible for the pharmacological activities of ginseng. The purpose of this study was to investigate the effects of ginsenoside-Rb 1 (G-Rb 1 ) on swimming exercise-induced oxidative stress in male mice. Materials and Methods: A total of 48 animals were randomly divided into four groups, with twelve mice in each group. The first, second and third groups were designed as G-Rb 1 treatment groups, got 25, 50 and 100 mg/kg bodyweight of G-Rb 1 , respectively. The fourth group was designed as the control group, got physiologic saline. The mice were intragastrically administered once daily for 4 weeks. The weight-loaded forced swimming test was conducted on the final day of experimentation. Then the exhaustive swimming time, blood lactate, serum creatine kinase (CK), malondialdehyde (MDA) and antioxidant enzymes in liver of mice were measured. Results: The results showed that G-Rb 1 could prolong the exhaustive swimming time and improve exercise endurance capacity of mice, as well as accelerate the clearance of blood lactate and decrease serum CK activities. Meanwhile, G-Rb 1 could decrease MDA contents and increase superoxide dismutase, catalase, glutathione peroxidase activities in liver of mice. Conclusions: The study suggested that G-Rb 1 possessed protective effects on swimming exercise-induced oxidative stress in mice.

Keywords: Antioxidant enzymes, blood lactate, exhaustive swimming time, malondialdehyde, serum creatine kinase


How to cite this article:
Qi B, Zhang L, Zhang Z, Ouyang J, Huang H. Effects of ginsenosides-Rb 1 on exercise-induced oxidative stress in forced swimming mice. Phcog Mag 2014;10:458-63

How to cite this URL:
Qi B, Zhang L, Zhang Z, Ouyang J, Huang H. Effects of ginsenosides-Rb 1 on exercise-induced oxidative stress in forced swimming mice. Phcog Mag [serial online] 2014 [cited 2019 Jul 23];10:458-63. Available from: http://www.phcog.com/text.asp?2014/10/40/458/141818


   Introduction Top


It is well-established that an aerobic metabolism in biological systems produces pro-oxidant molecules. These pro-oxidant molecules are called free radicals or reactive oxygen species (ROS), including the superoxide radical (O 2 - ), hydroxyl radicals, hydrogen peroxide (H 2 O 2 ) and nitric oxide. [1] Under normal physiological conditions, the cells defend themselves against ROS production has enough endogenous antioxidant reserves. The endogenous antioxidant defense is made up of both non-enzymatic and enzymatic antioxidants. Common non-enzymatic antioxidants include ascorbic acid (vitamin C), tocopherol (vitamin E), reduced glutathione (GSH), melatonin, thioredoxin, uric acid, lipoic acid and bilirubin. Common enzymatic antioxidants include superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and GSH reductase. [2],[3] Over the past two decades, adequate strong evidence from animal and human studies has shown a strenuous physical activity causes an increase in oxygen consumption and ROS production, then the negative consequence is an imbalance between ROS and antioxidant defense, resulting in oxidative stress, which can lead to damage or destruction of cellular macromolecules such as lipids, proteins and nucleic acids. [4],[5],[6] However, under conditions, the excessive formation of free radicals are eliminated by endogenous antioxidants may not be sufficient and should be supplemented with exogenous antioxidant, primarily obtained as nutrients or nutritional supplements. These exogenous antioxidants by scavenging the radicals inhibit the cell and its components damaging and assisting smooth and normal function. [7],[8],[9]

Panax ginseng C.A. Meyer (Araliaceae) is a perennial herb of the family Araliaceae. P. ginseng C.A. Meyer is primarily found in three Northeastern Provinces of China, the Korean Peninsula, Fukushima, Japan and East Siberia of the former Soviet Union. The fleshy root of this plant, commonly known as ginseng, is one of the most well-known and valued herbs in traditional Chinese medicine for over 2000 years. [10] As first recorded in the oldest Chinese herbal compilation (Shen Nong's Materia Medica), ginseng strengthens the vital organs, secures the spirit, anchors the soul, stops fear and fright, eliminates diseases, brightens the eyes, sharpens the senses and benefits intelligence. When taken long-term, it promotes strength, health and longevity. [11] Li Shizhen, a famous Chinese folk doctor in Ming Dynasty, also spoke highly of ginseng as the best tonic in the herbs. Previous studies have shown that ginseng has many pharmacological activities such as anticoagulant, antioxidative, anticancer, anti-fatigue and anti-inflammatory activities, analgesic, central nervous system, neuroprotective and immunomodulation effects. [12],[13],[14],[15] Recent investigations have proved that the active constituents of ginseng include ginsenosides, polysaccharides, peptides and polyacetylenic alcohols. [16] Ginsenosides, a group of saponins with triterpenoid dammarane structure, are considered mainly responsible for the pharmacological activities of ginseng. It has been shown that ginsenosides have antioxidant, anti-inflammatory, anti-apoptotic, anti-fatigue and immunostimulant properties. [17],[18] At present, more than 30 distinct ginsenosides have now been identified in the ginseng, among these ginsenosides-Rb 1 (G-Rb 1 ), -Rb 2 , -Ro, -Rg 1 , -Rc, -Rd and -Re are highly abundant. In particular, G-Rb 1 [Figure 1] makes up 0.37-0.5% of ginseng extracts and it has stronger antioxidant potency than the others, [19],[20] which suggests that it is beneficial in counteracting exercise-induced oxidative stress. However, the effects of G-Rb 1 on exercise-induced oxidative stress have not been investigated thus far. Therefore, the research presented here was designed to evaluate the effects of G-Rb1 on swimming exercise-induced oxidative stress in male mice.
Figure 1: Chemical structure of ginsenoside Rb1

Click here to view



   Materials and methods Top


Main reagents

G-Rb 1 (it was isolated from the root of P. ginseng C.A. Meyer, chemical purification >96.2%) was purchased from the Fanke Pharmaceutical Co. (Shanghai, China). The assay kits of blood lactate, SOD, CAT, GPx and malondialdehyde (MDA) were purchased from Jiancheng Institute of Biotechnology (Nanjing, China). The assay kit of creatine kinase (CK) was purchased from Zhong Sheng Biotechnology and Science Inc. (Beijing, China). All other reagents used in this study were of analytical grade and were obtained locally.

Experimental animals

Male Kunming strain mice, weighed 18-22 g, were obtained from the Center of Experimental Animal of Hunan Province (Changsha, China). Animals were housed in plastic cages in a room maintained at 22°C and 55% relative humidity with a 12-h light/dark cycle and allowed free access to laboratory standard diet and water. All the experimental protocols described in this study followed the Institutional Guidelines of Hunan Province and were approved by the Ethics Review Committee for Animal Experimentation of Institute of Central South University (approval number: CNSY 2012-0028).

After 1 week of adaptation period, the animals were randomly divided into four groups, with twelve mice in each group. The first, second and third groups were designed as G-Rb 1 treatment groups, got 25, 50 and 100 mg/kg bodyweight of G-Rb 1 , respectively. The fourth group was designed as the control group and got physiologic saline. The mice were intragastrically administered once daily for continuous 4 weeks. The doses of G-Rb 1 and 4 weeks treatment time used in this study were confirmed to be suitable and effective in tested mice, according to preliminary experiments.

Weight-loaded forced swimming test (WFST)

At the final day of experimentation, the mice underwent a weight-loaded WFST as the method described by Zhang et al. [21] with some modifications. Briefly, the animals were placed individually into acrylic plastic pool (50 cm in length, 50 cm in width and 40 cm in high) filled with water to a depth of 30 cm. The temperature of the water was maintained at 25 ± 0.5°C. The animals were made to swim with a load (tagged to the tail base) of 6% of their body weight. The exhaustive swimming time was used as the index of the exercise endurance. The exhaustion was defined as animal dropping its head in water within 10 s and being unable to bail out the water surface. [21],[22],[23]

Analysis of biochemical parameters

Immediately after WFST, the animals were removed from the acrylic plastic pool. After anesthetization with pentobarbital sodium (0.5 mg/kg bodyweight, i.p.), blood samples were obtained from the orbital sinus for lactate and CK analysis. Then, the livers were removed and then frozen in liquid N 2 for SOD, CAT, GPx and MDA analysis. All the biochemical parameters were determined using respective commercial diagnostic kits according to the manufacturer's recommended instructions.

Serum CK activities were detected a method based on the ability of CK to form ATP, which reacts with glucose to produce glucose-6-phosphate (G-6-P), catalyzed by hexokinase. In the presence of G-6-P dehydrogenase, resultant G-6-P further reacts with NADP + to form NADPH and the wavelength was set at 340 nm. Blood lactate contents were detected using the dehydriding method and the wavelength was set at 530 nm. SOD activities were detected using xanthine oxidase method and the wavelength was set at 550 nm. GPx activities were detected using GSH as substrate by measuring the decrease of enzymatic reaction of GSH (Except the effect of non-enzymatic reaction) and the wavelength was set at 412 nm. CAT activities were detected using the colorimetric method based on the decomposition of H 2 O 2 by CAT and the wavelength was set at 405 nm. MDA contents were detected using the thiobarbituric acid (TBA) method based on its reaction with TBA to form thiobarbituric acid-reactive substances and the wavelength was set at 532 nm.

Statistical analysis

All the data were expressed as the mean ± standard deviation. The experiments were conducted in at least triplicate and Student's t-test was used for comparing the difference in intergroup measurement data. P values < 0.05 were regarded as having statistical significance.


   Results and discussion Top


Effects of G-Rb 1 on the exhaustive swimming time of mice

As shown in [Figure 2], the exhaustive swimming time of mice in the first, second and third groups were significantly prolonged compared with the fourth group (P < 0.05) and the exhaustive swimming time increased by 47.4%, 75.3% and 96.4%, respectively. WFST is commonly used as anti-fatigue and exercise endurance tests. Other methods of forced exercise such as the motor driven treadmill or a wheel can cause animal injury and may not be routinely acceptable. [24] In the current study, the results showed that different doses of G-Rb 1 could significantly prolong the exhaustive swimming time, which demonstrated that G-Rb 1 could improve exercise endurance capacity of mice.
Figure 2: Effects of ginsenoside-Rb1 (G-Rb1) on the exhaustive swimming time of mice. Values are means ± standard deviation, each group contains twelve mice. First group: Low-dose G-Rb1treatment group (25 mg/kg bodyweight), second group: Middle-dose G-Rb1treatment group (50 mg/kg bodyweight), third group: High-dose Rb1 treatment group (100 mg/kg bodyweight), fourth group: Control group. *P < 0.05 when compared to the fourth (control) group

Click here to view


Effects of G-Rb 1 on the blood lactate contents of mice

As shown in [Figure 3], the blood lactate contents of mice in the first, second and third groups were significantly lower compared with the fourth group (P < 0.05) and the blood lactate contents decreased by 21.5%, 45.3% and 65.1%, respectively. Blood lactate is the glycolysis product of carbohydrate under an anarobic condition. Glycolysis is the main energy source for fierce exercise in a short-time, which can increase lactate production to a point that exceeds the rate of lactate removal. [25] Therefore, blood lactate is closely related to workload intensity and is one of the important indicators for judging the exercise endurance. In the current study, the results showed that different doses of G-Rb 1 could significantly accelerate the clearance of blood lactate after swimming exercise, which demonstrated that G-Rb 1 could increase the oxygen uptake and accelerate lactate metabolism, thereby improving exercise endurance capacity.
Figure 3: Effects of ginsenoside-Rb1 (G-Rb1) on the blood lactate contents of mice. Values are means ± standard deviation, each group contains 12 mice. First group: Low-dose G-Rb1 treatment group (25 mg/kg bodyweight), second group: Middle-dose G-Rb1 treatment group (50 mg/kg bodyweight), third group: High-dose G-Rb1 treatment group (100 mg/kg bodyweight), fourth group: Control group. *P < 0.05 when compared with the fourth (control) group

Click here to view


Effects of G-Rb 1 on the serum CK activities of mice

As shown in [Figure 4], the serum CK activities of mice in the second and third groups were significantly lower compared with the fourth group (P < 0.05) and the serum CK activities decreased by 24.2% and 41.1%, respectively. Although, the serum CK activities of mice in the first were also decreased, no significant difference was observed (P > 0.05). Serum CK is widely accepted as an indicator of muscle damage after exercise. [26] The normal function of CK in cells is to add a phosphate group to creatine, turning it into the high-energy molecule phosphocreatine. Phosphocreatine is burned as a quick source of energy by cells. However, the normal function of CK isn't as relevant, in this case, as what happens to CK when muscle is damaged. During the process of muscle degeneration, muscle cells break open and their contents find their way into the bloodstream. Because most of the CK in the body normally exists in muscle, an increase in the amount of CK in the blood indicates that muscle damage has occurred or is occurring. [27] In the current study, the results showed that medium and high doses of G-Rb 1 could significantly decrease serum CK activities after swimming exercise. It could be considered that this minimizing muscle damage contributes to improving exercise endurance capacity of mice treated with G-Rb 1 .
Figure 4: Effects of ginsenoside-Rb1 (G-Rb1) on the serum CK activities of mice. Values are means ± standard deviation, each group contains 12 mice. First group: Low-dose G-Rb1 treatment group (25 mg/kg bodyweight), second group: Middle-dose G-Rb1 treatment group (50 mg/kg bodyweight), third group: High-dose G-Rb1 treatment group (100 mg/kg bodyweight), fourth group: Control group. *P < 0.05 when compared to the fourth (control) group

Click here to view


Effects of G-Rb 1 on the antioxidant enzymes activities in liver of mice

As shown in [Figure 5], the antioxidant enzymes activities of mice in the first, second and third groups were significantly higher compared with the fourth group (P < 0.05). The SOD activities were increased by 27.4%, 55.1% and 63.3%, respectively. The CAT activities were increased by 35.2%, 77.1% and 126.5%, respectively and the GPx activities increased by 21.1%, 38.0% and 46.1%, respectively. Antioxidant enzymes, which provide the primary defense against ROS generated during exercise, may be activated selectively during an acute bout of strenuous exercise depending on the oxidative stress imposed on the specific tissues as well as the intrinsic antioxidant defense capacity. [28],[29] The primary ROS produced in the aerobic organisms is O 2 - that is a highly reactive cytotoxic agent. O 2 - is converted to H 2 O 2 by SOD. H 2 O 2 , in turn, is converted to molecular oxygen and H 2 O by either CAT or GPx. In addition, GPx can reduce lipid peroxides and other organic hydroperoxides that are highly cytotoxic products. [30] In the current study, the results were showed that different doses of G-Rb 1 could significantly increase antioxidant enzymes (SOD, CAT and GPx) activities in liver after swimming exercise, which demonstrated that G-Rb 1 had beneficial effects on attenuating the oxidative stress induced by exhaustive exercise.
Figure 5: Effects of ginsenoside-Rb1 (G-Rb1) on the antioxidant enzymes activities in liver of mice. Values are means ± standard deviation, each group contains twelve mice. First group: Low-dose G-Rb1 treatment group (25 mg/kg bodyweight), second group: Middle-dose G-Rb1 treatment group (50 mg/kg bodyweight), third group: High-dose G-Rb1 treatment group (100 mg/kg bodyweight), fourth group: Control group. *P < 0.05 when compared with the fourth (control) group

Click here to view


Effects of G-Rb 1 on the MDA contents in liver of mice

As shown in [Figure 6], the MDA contents of mice in the first, second and third groups were significantly lower compared with the fourth group (P < 0.05) and the MDA contents decreased by 29.3%, 38.5% and 52.9%, respectively. The most popular biomarker of oxidative stress is lipid peroxidation. Some confirmatory evidence have indicated that lipid peroxidation could limit different aspects of muscle or cell function by decreasing the fluidity of the membrane, making it more difficult for proteins/nutrients to pass through. [31] MDA is one of the most readily assayed end products of lipid peroxidation. The analysis of MDA by the TBA assay has been widely employed over many years in biological systems for the assessment of lipid peroxidation. [32] In response to various forms of exercise many studies have reported significant increases of MDA. [33],[34],[35] In the current study, the results showed that different doses of G-Rb 1 could significantly decrease MDA contents after swimming exercise, which demonstrated that G-Rb 1 could reduce lipid peroxidation and oxidative damage following exhausting exercise.
Figure 6: Effects of ginsenosides-Rb1 (G-Rb1) on the MDA contents in liver of mice. Values are means ± standard deviation, each group contains twelve mice. First group: Low-dose G-Rb1 treatment group (25 mg/kg bodyweight), second group: Middle-dose G-Rb1 treatment group (50 mg/kg bodyweight), third group: High-dose G-Rb1 treatment group (100 mg/kg bodyweight), fourth group: Control group. *P < 0.05 when compared with the fourth (control) group

Click here to view



   Conclusion Top


The present investigation showed that G-Rb 1 could prolong the exhaustive swimming time and improve exercise endurance capacity of mice as well as accelerate the clearance of blood lactate and decrease serum CK activities. Meanwhile, G-Rb1 could increase antioxidant enzymes activities and decrease MDA contents in liver of mice, which suggested that G-Rb1 possessed protective effects on exercise-induced oxidative stress in forced swimming mice. The experimental results provided theoretical support for G-Rb1 in the field of sports nutrition.


   Acknowledgment Top


This work was supported by Science and Technology Development Foundation of Zhejiang Province of China (Grant No. 20110406).

 
   References Top

1.Falone S, Mirabilio A, Passerini A, Izzicupo P, Cacchio M, Gallina S, et al. Aerobic performance and antioxidant protection in runners. Int J Sports Med 2009;30:782-8.  Back to cited text no. 1
    
2.Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44-84.  Back to cited text no. 2
    
3.Powers SK, Jackson MJ. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol Rev 2008;88:1243-76.  Back to cited text no. 3
    
4.Aoi W, Naito Y, Sakuma K, Kuchide M, Tokuda H, Maoka T, et al. Astaxanthin limits exercise-induced skeletal and cardiac muscle damage in mice. Antioxid Redox Signal 2003;5:139-44.  Back to cited text no. 4
    
5.Sureda A, Tauler P, Aguiló A, Cases N, Fuentespina E, Córdova A, et al. Relation between oxidative stress markers and antioxidant endogenous defences during exhaustive exercise. Free Radic Res 2005;39:1317-24.  Back to cited text no. 5
    
6.Vollaard NB, Shearman JP, Cooper CE. Exercise-induced oxidative stress: Myths, realities and physiological relevance. Sports Med 2005;35:1045-62.  Back to cited text no. 6
    
7.Vincent HK, Bourguignon CM, Vincent KR, Weltman AL, Bryant M, Taylor AG. Antioxidant supplementation lowers exercise-induced oxidative stress in young overweight adults. Obesity (Silver Spring) 2006;14:2224-35.  Back to cited text no. 7
    
8.Morillas-Ruiz JM, Villegas García JA, López FJ, Vidal-Guevara ML, Zafrilla P. Effects of polyphenolic antioxidants on exercise-induced oxidative stress. Clin Nutr 2006;25:444-53.  Back to cited text no. 8
    
9.Swamy MS, Sivanna N, Tamatam A, Khanum F. Effect of poly phenols in enhancing the swimming capacity of rats. Funct Foods Health Dis 2011;1:482-91.  Back to cited text no. 9
    
10.Chang YS, Seo EK, Gyllenhaal C, Block KI. Panax ginseng: A role in cancer therapy? Integr Cancer Ther 2003;2:13-33.  Back to cited text no. 10
    
11.Xiang YZ, Shang HC, Gao XM, Zhang BL. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res 2008;22:851-8.  Back to cited text no. 11
    
12.Hong YJ, Kim N, Lee K, Hee Sonn C, Eun Lee J, Tae Kim S, et al. Korean red ginseng (Panax ginseng) ameliorates type 1 diabetes and restores immune cell compartments. J Ethnopharmacol 2012;144:225-33.  Back to cited text no. 12
    
13.Yoo DG, Kim MC, Park MK, Song JM, Quan FS, Park KM, et al. Protective effect of Korean red ginseng extract on the infections by H1N1 and H3N2 influenza viruses in mice. J Med Food 2012;15:855-62.  Back to cited text no. 13
    
14.Saw CL, Wu Q, Kong AN. Anti-cancer and potential chemopreventive actions of ginseng by activating Nrf2 (NFE2L2) anti-oxidative stress/anti-inflammatory pathways. Chin Med 2010;5:37.  Back to cited text no. 14
    
15.Kim HG, Cho JH, Yoo SR, Lee JS, Han JM, Lee NH, et al. Antifatigue effects of Panax ginseng C.A. Meyer: A randomised, double-blind, placebo-controlled trial. PLoS One 2013;8:e61271.  Back to cited text no. 15
    
16.Dong TT, Cui XM, Song ZH, Zhao KJ, Ji ZN, Lo CK, et al. Chemical assessment of roots of Panax notoginseng in China: Regional and seasonal variations in its active constituents. J Agric Food Chem 2003;51:4617-23.  Back to cited text no. 16
    
17.Han JY, Kwon YS, Yang DC, Jung YR, Choi YE. Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol 2006;47:1653-62.  Back to cited text no. 17
    
18.Shin HY, Jeong HJ, Hyo-Jin-An, Hong SH, Um JY, Shin TY, et al. The effect of Panax ginseng on forced immobility time and immune function in mice. Indian J Med Res 2006;124:199-206.  Back to cited text no. 18
[PUBMED]  Medknow Journal  
19.Friedl R, Moeslinger T, Kopp B, Spieckermann PG. Stimulation of nitric oxide synthesis by the aqueous extract of Panax ginseng root in RAW 264.7 cells. Br J Pharmacol 2001;134:1663-70.  Back to cited text no. 19
    
20.Lee YJ, Kim HY, Kang KS, Lee JG, Yokozawa T, Park JH. The chemical and hydroxyl radical scavenging activity changes of ginsenoside-Rb1 by heat processing. Bioorg Med Chem Lett 2008;18:4515-20.  Back to cited text no. 20
    
21.Zhang XL, Ren F, Huang W, Ding RT, Zhou QS, Liu XW. Anti-fatigue activity of extracts of stem bark from Acanthopanax senticosus. Molecules 2010;16:28-37.  Back to cited text no. 21
    
22.Wu JL, Wu QP, Huang JM, Chen R, Cai M, Tan JB. Effects of L-malate on physical stamina and activities of enzymes related to the malate-aspartate shuttle in liver of mice. Physiol Res 2007;56:213-20.  Back to cited text no. 22
    
23.Li FL, Xiao FR, Qi JS. Anti-fatigue effects of polysaccharides extracted from Rhodiolae radix. Int Curr Pharm J 2007;2:49-52.  Back to cited text no. 23
    
24.Zhang Y, Yao X, Bao B, Zhang Y. Anti-fatigue activity of a triterpenoid-rich extract from Chinese bamboo shavings (Caulis bamfusae in taeniam). Phytother Res 2006;20:872-6.  Back to cited text no. 24
    
25.Wang JJ, Shieh MJ, Kuo SL, Lee CL, Pan TM. Effect of red mold rice on antifatigue and exercise-related changes in lipid peroxidation in endurance exercise. Appl Microbiol Biotechnol 2006;70:247-53.  Back to cited text no. 25
    
26.Kuwahara H, Horie T, Ishikawa S, Tsuda C, Kawakami S, Noda Y, et al. Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy. Free Radic Biol Med 2010;48:1252-62.  Back to cited text no. 26
    
27.Ji LL. Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 1993;25:225-31.  Back to cited text no. 27
[PUBMED]    
28.Hayes JD, McLellan LI. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 1999;31:273-300.  Back to cited text no. 28
    
29.Sindhu RK, Koo JR, Roberts CK, Vaziri ND. Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes: Response to insulin and antioxidant therapies. Clin Exp Hypertens 2004;26:43-53.  Back to cited text no. 29
    
30.Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr 2005;2:38-44.  Back to cited text no. 30
    
31.Smolka MB, Zoppi CC, Alves AA, Silveira LR, Marangoni S, Pereira-Da-Silva L, et al. HSP72 as a complementary protection against oxidative stress induced by exercise in the soleus muscle of rats. Am J Physiol Regul Integr Comp Physiol 2000;279:R1539-45.  Back to cited text no. 31
    
32.Requena JR, Fu MX, Ahmed MU, Jenkins AJ, Lyons TJ, Thorpe SR. Lipoxidation products as biomarkers of oxidative damage to proteins during lipid peroxidation reactions. Nephrol Dial Transplant 1996;11 Suppl 5:48-53.  Back to cited text no. 32
    
33.Cavas L, Tarhan L. Effects of vitamin-mineral supplementation on cardiac marker and radical scavenging enzymes, and MDA levels in young swimmers. Int J Sport Nutr Exerc Metab 2004;14:133-46.  Back to cited text no. 33
    
34.Marsh SA, Laursen PB, Coombes JS. Effects of antioxidant supplementation and exercise training on erythrocyte antioxidant enzymes. Int J Vitam Nutr Res 2006;76:324-31.  Back to cited text no. 34
    
35.Hoffman JR, Im J, Kang J, Maresh CM, Kraemer WJ, French D, et al. Comparison of low- and high-intensity resistance exercise on lipid peroxidation: Role of muscle oxygenation. J Strength Cond Res 2007;21:118-22.  Back to cited text no. 35
    


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5], [Figure 6]


This article has been cited by
1 Effects of Laminaria japonica polysaccharides on exercise endurance and oxidative stress in forced swimming mouse model
Feiwei Yan,Haitao Hao
Journal of Biological Research-Thessaloniki. 2016; 23(1)
[Pubmed] | [DOI]
2 Effect of broccoli extract enriched diet on liver cholesterol oxidation in rats subjected to exhaustive exercise
Vladimiro Cardenia,Maria Teresa Rodriguez-Estrada,Antonello Lorenzini,Erika Bandini,Cristina Angeloni,Silvana Hrelia,Marco Malaguti
The Journal of Steroid Biochemistry and Molecular Biology. 2016;
[Pubmed] | [DOI]
3 Neuroprotective Effect of Ginsenoside Rd in Spinal Cord Injury Rats
Lin Cong,Wenting Chen
Basic & Clinical Pharmacology & Toxicology. 2016; 119(2): 193
[Pubmed] | [DOI]
4 The Study of Mountain Ginseng-added High Fat Diet on Anti-Apoptosis of Skeletal Muscle
Hyobin Seo
Journal of Korean Forest Society. 2015; 104(3): 383
[Pubmed] | [DOI]
5 Effects of Resveratrol Supplementation on Oxidative Damage and Lipid Peroxidation Induced by Strenuous Exercise in Rats
Ning-Ning Xiao
Biomolecules & Therapeutics. 2015; 23(4): 374
[Pubmed] | [DOI]
6 Anti-fatigue Effects of 20(S)-Protopanaxadiol and 20(S)-Protopanaxatriol in Mice
Hyun A Oh,Dae-Eung Kim,Hyuck Jai Choi,Nam Jae Kim,Dong-Hyun Kim
Biological & Pharmaceutical Bulletin. 2015; 38(9): 1415
[Pubmed] | [DOI]



 

Top
   
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
    Materials and me...
    Results and disc...
   Conclusion
   Acknowledgment
    References
    Article Figures

 Article Access Statistics
    Viewed1540    
    Printed61    
    Emailed0    
    PDF Downloaded13    
    Comments [Add]    
    Cited by others 6    

Recommend this journal