Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 10  |  Issue : 40  |  Page : 449-457

Cytochrome C oxidase subunit I barcodes provide an efficient tool for Jinqian Baihua She (Bungarus parvus) authentication


1 Department of Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
2 Department of Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou; Beijing Royal Intergrative Medicine Hospital, Beijing, China
3 Department of Pharmacognosy, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou; Department of Pharmacy, Zhongshan People's Hospital, Zhongshan, China
4 South China Institute of Endangered Animals, Guangzhou, China
5 Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China

Correspondence Address:
Zhi Chao
School of Traditional Chinese Medicine, Southern Medical University, Guangzhou
China
Login to access the Email id

Source of Support: The study was supported by an open fund from “DNA Barcoding Medicinial Animals in China” Program, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences (No. MADNA201004), and China National Innovation and Entrepreneurship Training Programs for Undergraduates (No. 201212121056), Conflict of Interest: None


DOI: 10.4103/0973-1296.141816

Rights and Permissions

Objective: To test the feasibility of DNA barcoding for accurate identification of Jinqian Baihua She and its adulterants. Materials and Methods: Standard cytochrome C oxidase subunit I (COI) gene fragments were sequenced for DNA barcoding of 39 samples from 9 snake species, including Bungarus multicinctus, the officially recognized origin animal by Chinese Pharmacopoeia, and other 8 adulterate species. The aligned sequences, 658 base pairs in length, were analyzed for divergence using the Kimura-2-parameter (K2P) distance model with MEGA5.0. Results: The mean intraspecific K2P distance was 0.0103 and the average interspecific genetic distance was 0.2178 in B. multicinctus, far greater than the minimal interspecific genetic distance of 0.027 recommended for species identification. A neighbor-joining (NJ) tree was constructed, in which each species formed a monophyletic clade with bootstrap supports of 100%. All the data were submitted to Barcode of Life Data system version 3.0 (BOLD, http://www.barcodinglife.org) under the project title "DNA barcoding Bungarus multicinctus and its adulterants". Ten samples of commercially available crude drugs of JBS were identified using the identification engine provided by BOLD. All the samples were clearly identified at the species level, among which five were found to be the adulterants and identified as Dinodon rufozonatum. Conclusion: DNA barcoding using the standard COI gene fragments provides an effective and accurate means for JBS identification and authentication.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1684    
    Printed36    
    Emailed0    
    PDF Downloaded13    
    Comments [Add]    
    Cited by others 3    

Recommend this journal