Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 10  |  Issue : 40  |  Page : 435-440

Simultaneous quantification of eleven bioactive components of male flowers of Eucommia ulmoides oliver by HPLC and their quality evaluation by chemical fingerprint analysis with hierarchical clustering analysis


1 Deprtment of Pharmacy, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, Henan University, Kaifeng; Department of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
2 Department of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
3 Deprtment of Pharmacy, Engineering Center of Henan Province of Eucommia ulmoides Cultivation and Utilization, Henan University, Kaifeng, China

Correspondence Address:
Qin Li
Engineering Center of Henan of Province University of Eucommia ulmoides Cultivation and Utilization, School of Pharmacy, Henan University, Kaifeng - 475004
China
Login to access the Email id

Source of Support: This work was supported by Special Fund for Forestry-scientific Research in the Public Interest of China (NO: 201004029),, Conflict of Interest: None


DOI: 10.4103/0973-1296.141813

Rights and Permissions

Background: Eucommia ulmoides Oliv (EU), a dioecious perennial angiosperm, is one of the oldest tonics in Chinese traditional medicine. The tea of male flowers of EU has been become popularities and seen as aspirational health care tea in China. There were no enough marks and effective method to control the quality of male flowers of EU. Objective: A simple and efficient HPLC method was developed for the simultaneous determination of 11 bioactive compounds (4 iridoids, 1 phenylpropanoid, 6 flavonoids). HPLC chromatographic fingerprint and hierarchical cluster analysis were used to evaluate and classify the samples of male flowers of EU which came from different locations in China. Materials and Methods: Samples were separated on a Thermal hypersil gold column (250 mm × 4.6 mm, 5 μm) and detected by an ultraviolet detector. The UV wavelength was set at 206, 236, and 206 nm. Mobile phase consisted of methanol (B) and phosphoric acid-water (0.5%) (C) using a gradient elution. Analytes were performed at 25°C with a flow rate of 1.0 mL/min. Results: In quantitative analysis, the eleven components showed good regression (r 2 > 0.9996) within linear ranges, and their recoveries were in the range of 98.65-102.31%. In the chromatographic fingerprint, 16 peaks were selected as the characteristic peaks to assess the similarities of different samples. Hierarchical cluster analysis (HCA) was also applied to differentiate the samples based on the area of all the common peaks. The samples which had higher similarity in HPLC fingerprint were classified as a cluster. Conclusion: This study will provide methodological reference for the quality control and sample classification of male flowers of E. ulmoides.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1553    
    Printed54    
    Emailed1    
    PDF Downloaded14    
    Comments [Add]    
    Cited by others 1    

Recommend this journal