Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 10  |  Issue : 40  |  Page : 430-434

Mycelial fermentation characteristics and antiproliferative activity of Phellinus vaninii Ljup


1 Branch of Forest Protection, School of Forestry, Northeast Forestry University; Heilongjiang Forest By product and Specialty Institute, Mudanjiang 157011, China
2 College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
3 Heilongjiang Forest By product and Specialty Institute, Mudanjiang 157011, China
4 Heilongjiang Forestry Protection Institute, Harbin 150040, China

Correspondence Address:
Chunping Xu
College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.141812

Rights and Permissions

Background: The mycelial fermentation of higher fungi were investigated to posses various bioactivities. Materials and Methods: The mycelial growth and pellet morphology in a 5-L bioreactor were investigated. The mycelial broth containing biomass and extracellular products harvested from the fermentor was tested for antiproliferative activity of colon cancer LoVo cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide assay. Results: The maximum mycelial concentration in a 5-L bioreactor was 12.5 g/L after 8 days cultivation. Further investigation in the mycelial pellets during the fermentation period revealed that the mean diameter of the pellet morphology was positively correlated with mycelial biomass (R2 = 0.82, P < 0.05) and broth viscosity (R2 = 0.90, P < 0.01), significantly. The ethyl acetate extract showed the most significant effects, increasing the inhibition rate up to 87.5% after 48 h at concentration of 1000 μg/mL. Conclusion: The results demonstrated the feasibility of P. vaninii Ljup mycelial fermentation for large-scale production of bioactive and medicinal compounds.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1256    
    Printed31    
    Emailed0    
    PDF Downloaded13    
    Comments [Add]    

Recommend this journal