Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 10  |  Issue : 39  |  Page : 639-644

Identification of natural inhibitors against angiotensin I converting enzyme for cardiac safety using induced fit docking and MM-GBSA studies


1 Centre of Advanced Study in Crystallography and Biophysics, University of Madras, University of Madras, Maraimalai (Guindy) Campus, Chennai, India
2 Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India; Pharmacology Unit, Faculty of Pharmacy, Asian Institute of Medicine, Science and Technology University, Bedong Semeling Road, Bedong, 08100, Kedah, Malaysia
3 Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
4 Centre of Advanced Study in Crystallography and Biophysics; Bioinformatics Infrastructure Facility, University of Madras, Maraimalai (Guindy) Campus, Chennai

Correspondence Address:
Devadasan Velmurugan
Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Maraimalai (Guindy) Campus, Chennai - 600 025, India

Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.139809

Rights and Permissions

Background: Cleistanthins A and B are isolated compounds from the leaves of Cleistanthus collinus Roxb (Euphorbiaceae). This plant is poisonous in nature which causes cardiovascular abnormalities such as hypotension, nonspecific ST-T changes and QTc prolongation. The biological activity predictions spectra of the compounds show the presence of antihypertensive, diuretic and antitumor activities. Objective: Objective of the present study was to determine the in silico molecular interaction of cleistanthins A and B with Angiotensin I- Converting Enzyme (ACE-I) using Induced Fit Docking (IFD) protocols. Materials and Methods: All the molecular modeling calculations like IFD docking, binding free energy calculation and ADME/Tox were carried out using Glide software (Schrφdinger LLC 2009, USA) in CentOS EL-5 workstation. Results: The IFD complexes showed favorable docking score, glide energy, glide emodel, hydrogen bond and hydrophobic interactions between the active site residues of ACE-I and the compounds. Binding free energy was calculated for the IFD complexes using Prime MM-GBSA method. The conformational changes induced by the inhibitor at the active site of ACE-I were observed based on changes of the back bone Cα atoms and side-chain chi (x) angles. The various physicochemical properties were calculated for these compounds. Both cleistanthins A and B showed better docking score, glide energy and glide emodel when compared to captopril inhibitor. Conclusion: These compounds have successively satisfied all the in silico parameters and seem to be potent inhibitors of ACE-I and potential candidates for hypertension.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1706    
    Printed33    
    Emailed0    
    PDF Downloaded14    
    Comments [Add]    
    Cited by others 2    

Recommend this journal