Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 10  |  Issue : 39  |  Page : 596-605

Bioassay-guided isolation, identification and molecular ligand-target insight of lipoxygenase inhibitors from leaves of Anisomeles malabarica R.Br.


Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India

Correspondence Address:
P Srinivasan
Department of Bioinformatics, Alagappa University, Karaikudi - 630 004, Tamil Nadu
India
Login to access the Email id

Source of Support: The financial assistance provided by Department of Science and Technology (DST WOS-A), New Delhi, Conflict of Interest: None


DOI: 10.4103/0973-1296.139795

Rights and Permissions

Background: Anisomeles malabarica R. Br. (Lamiaceae) is extensively used in traditional medicine in major parts of India for several medicinal purposes, including their use in rheumatism. Materials and Methods: The air-dried leaves of A. malabarica were extracted with ethanol, defatted with n-hexane and then successively partitioned into chloroform and n-butanol fractions. Bioassay-guided fractionation and purification of chloroform fraction from A. malabarica lead to the isolation of lipoxygenase (LOX) inhibitors. The structures of isolated compounds were elucidated by ultraviolet, infrared, 1 H nuclear magnetic resonance (NMR), 13 C NMR and mass spectrometry spectroscopic techniques and assessed further by in vitro soybean lipoxygenase (sLOX) assay. In addition, the enzyme type inhibition was evaluated through molecular docking technique as a part of computational study. Results: The bioactive compounds 3, 4 dihydroxy benzoic acid (1) and 4', 5, 7-trihydroxyflavone (2) were isolated from chloroform fraction of A. malabarica, whose bioactivity was observed to be dose-dependent compared to n-butanol fraction. Among the compounds, 3, 4 dihydroxy benzoic acid showed significant sLOX inhibitory activity with 74.04% ±2.6% followed by 4', 5, 7-trihydroxyflavone (34.68% ±1.9%). The computational analysis of compounds showed their molecular interaction with important amino acid residues and nonheme iron atom in the catalytic site of LOX by enlightening their potential binding mode at molecular level. Conclusions: The LOX inhibitory constituents were identified from A. malabarica by means of bioassay-guided fractionation process. The results derived from in vitro and computational experiments confirm the potential of the isolated compounds and provide additional evidence for its traditional use in inflammatory disorders.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2487    
    Printed45    
    Emailed2    
    PDF Downloaded14    
    Comments [Add]    
    Cited by others 1    

Recommend this journal