Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 10  |  Issue : 39  |  Page : 494-500

Inhibition of inducible nitric oxide synthase and osteoclastic differentiation by Atractylodis Rhizoma Alba extract


Department of Pharmacology and Toxicology, School of Dentistry, Kyung Hee University, Seoul 130 701, Republic of Korea, Korea

Correspondence Address:
Sung-Jin Kim
Department of Pharmacology and Toxicology, School of Dentistry, Kyung Hee University, 26, Kyunghee daero, Dongdaemun gu, Seoul 130 701
Korea
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.139780

Rights and Permissions

Background: Atractylodis Rhizoma Alba (ARA) has been used in Korean folk medicine for constipation, dizziness, and anticancer agent. In the present study, we performed to test whether the methanolic extract of ARA has antioxidant and antiosteoclastogenesis activity in RAW 264.7 macrophage cells. Materials and Methods: Antioxidant capacities were tested by measuring free radical scavenging activity, nitric oxide (NO) levels, reducing power, and inducible nitric oxide synthase (iNOS) expression in response to lipopolysaccharides (LPS). Antiosteoclastogenesis activity was evaluated by performing tartrate-resistant acid phosphatase assay in RAW 264.7 macrophage cells. Results: The extract exerted significant 1,1-diphenyl-2-picrylhydrazyl and NO radical scavenging activity, and it exerted dramatic reducing power. Induction of iNOS and NO by LPS in RAW 264.7 cells was significantly inhibited by the extract, suggesting that the ARA extract inhibits NO production by suppressing iNOS expression. Strikingly, the ARA extracts substantially inhibited the receptor activator of NF-κB ligand-induced osteclastic differentiation of LPS-activated RAW 264.7 cells. The ARA extract contains a significant amount of antioxidant components, including phenolics, flavonoids and anthocyanins. Conclusion: These results suggest that the methanolic extract of ARA exerts significant antioxidant activities potentially via inhibiting free radicals and iNOS induction, thereby leading to the inhibition of osteoclastogenesis.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1243    
    Printed67    
    Emailed1    
    PDF Downloaded13    
    Comments [Add]    
    Cited by others 1    

Recommend this journal