Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 10  |  Issue : 39  |  Page : 332-337

Enhanced dissolution and stability of Tanshinone IIA base by solid dispersion system with nano-hydroxyapatite


1 Chinese Herb Preparation Room, Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu; College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
2 Chinese Herb Preparation Room, Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Nanjing, Jiangsu, China
3 College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China

Correspondence Address:
Xiao-bin Jia
Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Road, Nanjing, Jiangsu 210028
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.137375

Rights and Permissions

Background: Tanshinone IIA (TSIIA) exhibits a variety of cardiovascular effects; however, it has low solubility in water. The preparation of poorly soluble drugs for oral delivery is one of the greatest challenges in the field of formulation research. Among the approaches available, solid dispersion (SD) technique has proven to be one of the most commonly used these methods for improving dissolution and bioavailability of drugs, because of its relative simplicity and economy in terms of both preparation and evaluation. Objective: This study was aimed at investigating the dissolution behavior and physical stability of SDs of TSIIA by employing nano-hydroxyapatite (n-HAp). Materials and Methods: The TSIIA SDs was prepared to use a spray-drying method. First, an in vitro dissolution test was performed to assess dissolution characteristics. Next, a set of complementary techniques (differential scanning calorimetry, scanning electron microscopy, X-ray powder diffraction, and Fourier transform infrared spectroscopy) was used to monitor the physicochemical properties of the SDs. The SDs was stored at 40°C/75% relative humidity for 6 months, after which their stability was assessed. Results: TSIIA dissolution remarkably improved because of the formulation of the SDs with n-HAp particles. Comparisons with the corresponding physical mixtures revealed changes in the SDs and explained the formation of the amorphous phase. In the stability test, virtually no time-dependent decrease was observed in either in vitro drug dissolution or drug content. Conclusion: SD formulation with n-HAp may be a promising approach for enhancing the dissolution and stability of TSIIA.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1384    
    Printed25    
    Emailed0    
    PDF Downloaded8    
    Comments [Add]    

Recommend this journal