Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 10  |  Issue : 38  |  Page : 264-271

Molecular docking studies of flavonoids for their inhibition pattern against β-catenin and pharmacophore model generation from experimentally known flavonoids to fabricate more potent inhibitors for Wnt signaling pathway


Department of Bioinformatics, National Center for Bioinformatics, Quaid i Azam University, Islamabad, Pakistan

Correspondence Address:
Sajid Rashid
National Center for Bioinformatics, Quaid i Azam University, Islamabad
Pakistan
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.133269

Rights and Permissions

Background: Canonical Wnt signaling plays a key role in tumor cell proliferation, which correlates with the accumulation of β-catenin in cell due to inactivation of glycogen synthetase kinase-3 β. However, uncontrolled expression of β-catenin leads to fibromatosis, sarcoma and mesenchymal tumor formation. Recently, a number of polyphenolic compounds of naturally occurring flavonoid family have been screened for the inhibition of Wnt signaling. Objective: Elucidation of the binding mode of inhibitors to β-catenin, reporting more potent inhibitors for the disease-causing protein and designing a pharmacophore model based on naturally occurring compounds, flavonoids. Materials and Methods: In this study, a comparative molecular docking analysis was performed to elucidate the binding mode of experimentally reported and unknown inhibitors. Based on the knowledge of geometry, binding affinity and drug score, we described a subset of novel inhibitors. Results: The binding energy of known inhibitors (isorhamnetin, fisetin, genistein and silibinin) was observed in a range of −5.68 to −4.98 kcal/mol, while novel inhibitors (catechin, luteolin, coumestrol and β-naphthoflavone) exhibited −6.50 to −5.22 kcal/mol. We observed good placement and strong interactions of selected compounds inside the binding pocket of β-catenin. Moreover, flavonoid family members and T cell factors 4 (TCF4) compete for β-catenin binding by sharing common binding residues. Conclusion: This study will largely help in understanding the molecular basis of β-catenin/TCF4 inhibition through flavonoids by exploring their structural details. Finally, the novel inhibitors proposed in this study need further attention to uncover cancer treatment and with the generated pharmacophore model, more and potent β-catenin inhibitors can be easily screened.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2347    
    Printed74    
    Emailed0    
    PDF Downloaded42    
    Comments [Add]    
    Cited by others 2    

Recommend this journal