Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2014  |  Volume : 10  |  Issue : 37  |  Page : 1-8

Crude ethyl acetate extract of marine microalga, Chaetoceros calcitrans, induces Apoptosis in MDA-MB-231 breast cancer cells


1 Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
2 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
3 Laboratory of Marine Science and Aquaculture, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
4 Laboratory of Molecular Biomedicine, Institute of Bioscience; Department of Nutrition and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia

Correspondence Address:
Su Peng Loh
Department of Nutrition and Health Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor
Malaysia
Login to access the Email id

Source of Support: Agri-Science Fund Grant from the Ministry of Agriculture, Malaysia (Project No. 5450384), Conflict of Interest: None


DOI: 10.4103/0973-1296.126650

Rights and Permissions

Background: Marine brown diatom Chaetoceros calcitrans and green microalga Nannochloropsis oculata are beneficial materials for various applications in the food, nutraceutical, pharmaceutical and cosmeceutical industries. Objective: This study investigated cytotoxicity of different crude solvent extracts from C. calcitrans and N. oculata against various cancer cell lines. Materials and Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was carried out to screen the cytotoxic effects of hexane (Hex), dichloromethane (DCM), ethyl acetate, and methanol extract from C. calcitrans and N. oculata toward various cancer cell lines. Flow cytometry cell cycle was used to determine the cell cycle arrest while the mode of cell death was investigated through acridine orange/propidium iodide (AOPI) staining, Annexin V-Fluorescein Isothiocyanate (FITC) and Terminal deoxynucleotidyl transferase-mediated d-UTP Nick End Labeling (TUNEL) assays. Expression profile of apoptotic and proliferative-related genes was then determined using the multiplex gene expression profiler (GeXP). Results: Crude ethyl acetate (CEA) extract of C. calcitrans inhibited growth of MDA-MB-231 cells, with IC 50 of 60 μg/mL after 72 h of treatment. Further studies were conducted to determine the mode of cell death at various concentrations of this extract: 30, 60 and 120 μg/mL. The mode of cell death was mainly apoptosis as shown through apoptosis determination test. The expression data from GeXP showed that caspase-4 was upregulated while B-cell leukemia/lymphoma 2(Bcl-2) was down regulated. Thus, caspase-4 induction endoplasmic reticulum death pathway is believed to be one of the mechanisms underlying the induction of apoptosis while Bcl-2 induced S and G2/M cell cycle phase arrest in MDA-MB-231 cells. Conclusion: CEA extract of C. calcitrans showed the highest cytotoxicity on MDA-MB-231 via apoptosis.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2476    
    Printed58    
    Emailed0    
    PDF Downloaded22    
    Comments [Add]    
    Cited by others 1    

Recommend this journal