Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2013  |  Volume : 9  |  Issue : 36  |  Page : 32-37

Optimization of enzyme-assisted extraction and characterization of collagen from Chinese sturgeon (Acipenser sturio Linnaeus) skin


1 School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
2 School of Pharmacy, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
3 School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
4 School of Environment, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China

Correspondence Address:
Liuqing Yang
School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.117859

Rights and Permissions

Background: Sturgeon (Acipenser sturio Linnaeus) skin contains high amount of nutrients including unsaturated fatty acids and collagen. A pepsin-assisted extraction procedure was developed and optimized for the extraction of collagen from Chinese sturgeon (Acipenser sturio Linnaeus) skins. Objective: To determine the optimum conditions with the maximum yield of the pepsin-soluble collagen (PSC) extraction. Materials and Methods: The conditions of the extraction were optimized using response surface methodology. The Box-Behnken design was used to evaluate the effects of the three independent variables (extraction time, enzyme concentration, and solid-liquid ratio) on the PSC yield of the sturgeon skin. Results: The optimal conditions were: solid-liquid ratio of 1:11.88, enzyme concentration of 2.42%, and extraction time of 6.45 h. The maximum yield of 86.69% of PSC was obtained under the optimal conditions. This value was not significantly different from the predicted value (87.4%) of the RSM (P < 0.05). Conclusion: The results of this study indicated that the production of PSC from sturgeon skin is feasible and beneficial. The patterns of sodium dodecyl sulfate-polyacrylamide gel electrophoretic patterns (SDS-PAGE) indicated that the sturgeon skin contains type I collagen, which is made of α-chain and β-chain. The infrared spectra of the collagens also indicated that pepsin hydrolysis does not affect the secondary structure of collagen, especially triple-helical structure.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3726    
    Printed76    
    Emailed0    
    PDF Downloaded20    
    Comments [Add]    
    Cited by others 8    

Recommend this journal