Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2013  |  Volume : 9  |  Issue : 36  |  Page : 309-314

Inhibition of wheat bran and it's active compoments on α-glucosidase in vitro


1 Department of Food Quality and Safety, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013; Department of Biotechnology and Engineering,College of Biology and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
2 Department of Chinese Medicine and Pharmacology, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
3 Department of Food Quality and Safety, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China

Correspondence Address:
Jun Chen
Department of Chinese Medicine and Pharmacology, School of Pharmacy, Jiangsu University, 301, Xuefu Road, Zhenjiang, Jiangsu Province, 212013
China
Login to access the Email id

Source of Support: This work was supported by the Education Department of Jiangsu Province, China (Project No.1223000131), Conflict of Interest: None


DOI: 10.4103/0973-1296.117826

Rights and Permissions

Background: Wheat bran is a traditional Chinese medicine; however, it is mostly used as feedstuff in China. Wheat bran is widely accepted as an important ingredient in many low-glycemic index foods in modern western societies; however, its glycemic control mechanism is unknown. Objective: To determine potent α-glucosidase inhibitory compounds from wheat bran and to identify the inhibition on α-glucosidase . Materials and Methods: Ethanolic extract of wheat bran was prepared to evaluate the inhibitory activity on α-glucosidase, then fractionation of the extract was guided by in vitro enzyme-inhibition assay, and the potent α-glucosidase inhibitory compounds were identified by high performance liquid chromatography and atmospheric pressure chemical ionization-mass spectrometry; finally the enzyme inhibition process was studied using the Michaelis-Menton and the Lineweaver-Burk equations. Results: Both baker's yeast and rat intestinal enzymes were mostly inhibited (87.9% and 66.8% inhibition, respectively) at concentration 0.6 mg/mL of the ethanolic extract of wheat bran. The petroleum ether fraction in the ethanolic extract of wheat bran showed significant activity against rat intestinal α-glucosidase, and revealed a dose-dependent effect. The inhibition was 76.57% at 0.3 mg/mL and 100% at 0.6 mg/mL. The active fraction 13 of petroleum ether fraction was identified as alkylresorcinols (ARs). ARs showed strong inhibition towards α-glucosidase and its IC 50 value was found to be 37.58 ΅g/mL. The enzyme kinetic studies showed that, in the presence of ARs, the Michaelis-Menton constant (Km ) remains constant whereas the maximal velocity (Vmax ) decreases, revealing a non-competitive type of inhibition. Conclusion: The therapeutic potentiality of ARs in the management of the postprandial hyperglycemia will proliferate the utilization of wheat bran in controlling type 2 diabetes.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1645    
    Printed54    
    Emailed0    
    PDF Downloaded18    
    Comments [Add]    
    Cited by others 2    

Recommend this journal