Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 


 
  Table of Contents  
ORIGINAL ARTICLE
Year : 2013  |  Volume : 9  |  Issue : 35  |  Page : 216-219  

Simultaneous determination of four bioactive compounds in Glechoma longituba extracts by high performance liquid chromatography


1 Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing; Research Center of TCM Processing Technology, Zhejiang Chinese Medical University, Hangzhou, China
2 Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing, China

Date of Submission03-Apr-2012
Date of Acceptance29-Apr-2012
Date of Web Publication11-Jun-2013

Correspondence Address:
Hao Cai
Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Nanjing University of Chinese Medicine, Nanjing
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.113269

Rights and Permissions
   Abstract 

Background: Glechoma longituba, one of the long-practiced traditional Chinese medicines in history, is still commonly used nowadays in oriental countries. Previous study indicates that phenolic acid and flavonoids have considerable bioactivities, thus, chlorogenic acid, caffeic acid, apigenin-7-O-glucoside and rosmarinic acid were chosen as the marker components for the simultaneous determination to evaluate the intrinsic quality of G. longituba, and related high performance liquid chromatographic method was urgent to established. Materials and Methods: A HPLC method was established for simultaneous determination of four major active components in G. longituba, three batches which collected from different suppliers in Zhejiang, Anhui and Jiangsu Provinces were determined. Results: The contents of chlorogenic acid, caffeic acid, apigenin-7-O-glucoside and rosmarinic acid in G. longituba samples analyzed were 0.00225-0.00234%, 0.0238-0.0242%, 0.00271-0.00313%, 0.830-0.896%, respectively. Conclusion : The developed method can be applied to the intrinsic quality control of G. longituba.

Keywords: Glechoma longituba , High performance liquid chromatography, quality control, simultaneous determination


How to cite this article:
Shan Q, Cao G, Cai H, Cai B. Simultaneous determination of four bioactive compounds in Glechoma longituba extracts by high performance liquid chromatography. Phcog Mag 2013;9:216-9

How to cite this URL:
Shan Q, Cao G, Cai H, Cai B. Simultaneous determination of four bioactive compounds in Glechoma longituba extracts by high performance liquid chromatography. Phcog Mag [serial online] 2013 [cited 2019 Oct 19];9:216-9. Available from: http://www.phcog.com/text.asp?2013/9/35/216/113269


   Introduction Top


Glechoma longituba , the dried aerial part of G. longituba (Nakai) Kupr (Labiatae), is distributed widely in Asia, Europe and America. It has been used for centuries in traditional Chinese medicine for the treatment of cholelithiasis, urolithiasis, dropsy and various ailments, asthma, bronchitis, colds and inflammation. [1],[2],[3] Previous research on the chemical constituents, including phenolic acid, flavonoids, triterpenoids and essential oil, has been isolated from the herb and identified. [4],[5] Pharmacological studies have indicated that phenolic acid such as caffeic acid, chlorogenic acid and rosmarinic acid have significant antioxidant bioactivities, while flavonoids are famous for their antioxidant and antiradiation abilities. [6],[7],[8],[9] Hence, chlorogenic acid, caffeic acid, rosmarinic acid and apigenin-7-O-glucoside were chosen as marker components for intrinsic quality assessment of G. longituba. Three batches of G. longituba from Zhejiang, Anhui, Jiangsu Provinces were collected. An efficient and reliable approach for quality evaluation of G. longituba has been established based on high performance liquid chromatography, which can also be further applied for the determination of phenolic acid and flavonoids in its related processed drugs or preparations.


   Experimental Method Top


Materials and reagents

Three batches of G. longituba were collected from different suppliers in Zhejiang, Anhui, Jiangsu Provinces and identified by Prof. Zhang Yun, in Zhejiang Chinese Medical University. Reference standards of caffeic acid and chlorogenic acid were purchased from the National Institute for the Control of Pharmaceutical and Biological Products (Beijing, China). Rosmarinic acid was purchased from Shanghai Tongtian Biotechnology Co. Ltd. (Shanghai, China). Apigenin-7-O-glucoside was purchased from Shanghai Yongheng Biotechnology Co. Ltd. (Shanghai, China). The purity for each standard compound was greater than 98% by HPLC analysis. The structures of these four compounds were shown in [Figure 1]. All reagents with high grade were obtained from others. Milli-Q water (Millipore, Bedford, MA, USA) was used throughout the study.
Figure 1: The chemical structures of four active components in G. longituba

Click here to view


Preparation of sample solutions

The powder of G. longituba samples (1.0 g) was accurately weighed and dissolved in 10 ml of 80% methanol solution and then refluxed for 60 min and cooled at room temperature; methanol was added to compensate for the lost weight. The sample solution was centrifuged (× 4000 g) for 15 min and the supernatant was filtered through a 0.45-μm membrane filter, before subjecting 10 μL to HPLC analysis.

Preparation of standard solutions and calibration curve

The standards of chlorogenic acid, caffeic acid, rosmarinic acid and apigenin-7-O-glucoside were dried and accurately weighed and then dissolved with methanol to produce stock standard solutions. A mixed stock solution of standards, containing chlorogenic acid (8.8 mg/mL), caffeic acid (1.64 mg/mL), rosmarinic acid (4.94 mg/mL),and apigenin-7-O-glucoside (5.8 mg/mL) was finally prepared. The calibration curves were established based on seven concentrations of each standard by diluting the stock solutions with methanol in appropriate quantities. All calibration curves were constructed from peak areas of the reference standards versus their concentrations. The standard stock and working solutions were all prepared in calibrated flasks and stored at 4°C. The solutions were filtered through a 0.45-μm membrane prior to injection.

Chromatographic conditions

The chromatographic analyses were carried out on an Agilent 1200 HPLC system (Agilent Technologies, Palo Alto, CA, USA) with diode array detector. An Agilent Zorbax Extend C 18 Column (250 mm × 4.6 mm, 5 μm) was used with a flow rate of 1.0 mL/min for the sample. The injection volume was 10 μL and the column temperature was maintained at 30°C. Mobile phase was consisted of acetonitrile (A) and aqueous phosphoric acid (0.2%, v/v) (B) with gradient elution: 0~15 min (2:98), 15~18 min (14:86), 19~30 min (20:80), 31~69 min (30:70), 70˜80 min (40:60), 81~89 min (50:50). The optimized detection wavelength was 325 nm.


   Results and Discussion Top


Optimization of HPLC chromatographic conditions

The aim of this study was to develop a HPLC method using DAD detection for simultaneous determination of chlorogenic acid, caffeic acid, rosmarinic acid and apigenin-7-O-glucoside. HPLC conditions including mobile phase, gradient elution procedure, detection wavelength, flow rate of the mobile phase and column temperature were optimized, respectively, to achieve good separation of marker components. The mobile phase composition and gradient program were first investigated. Several elution systems were trialled, the phosphoric acid, acetic acid as well as formic acid were employed for the study of condition optimization with acetonitrile as the organic phase. The results suggest that the elution system composed of 0.2% phosphoric acid with acetonitrile was selected as the most appropriate eluent.

The choice of detection wavelength is also crucial for developing a reliable determination method for accurate quantitative analysis of these four bioactivity ingredients in the herb. The UV spectra of the compounds were obtained at 210, 230, 280, 300 and 325 nm by diode array detector under the chromatographic conditions as described in chromatographic system. The optimal detection wavelength in the HPLC analysis was to be 325 nm, with marker compounds sensitively detected in the analysis. Typical separation of a standard mixture in different wavelength (A); reference standards (B) and G. longituba extracts (C) were shown in [Figure 2] under the optimized HPLC conditions.
Figure 2: (a) Typical chromatograms of reference standards in different detection wavelengths: (1) 325 nm, (2) 210 nm, (3) 230 nm, (4) 280 nm, (5) 300 nm; (b) Typical chromatograms of reference standards in optimized wavelength: (1) chlorogenic acid; (2) caffeic acid; (3) apigenin- 7-O-glucoside; (4) rosmarinic acid; (c) Typical chromatograms of G. longituba samples

Click here to view


Method validation

The HPLC method was validated by defining the linearity, limits of quantification and detection, repeatability, precision, stability and recovery.

Linearity, limits of quantification and detection

Series of standard solutions of four compounds were freshly prepared in methanol respectively, and were used to determine linear range of the analytes. The results of the standard calibration curves of regression equation and linearity were summarized in [Table 1]. Good linear relationships and correlation coefficients (r> 0.9995) were achieved. The limit of detection (LOD) and limit of quantification (LOQ) values of individual compounds listed in [Table 1] clearly indicated that the analytical method was acceptable with excellent sensitivity.
Table 1: Calibration plots, LOD and LOQ of the four compounds in G. longituba extract


Click here to view


Precision, repeatability and stability

Intraday and interday variability were investigated by determining each marker compound at one concentration level in six replicates during a single day and by replicating the experiments on three consecutive days, variations were expressed by relative standard deviations (RSD) and remained <1.74% for all the marker compounds. Six independently prepared sample solutions with the same amount were calculated for evaluation of repeatability, RSD were less than 2.89%. The processes of the treatments were in parallel. One of the samples was injected into the instruments at 0 h, 2 h, 4 h, 6 h, 8 h, 12 h and 24 h to evaluate the stability of the solution. RSD values of the peak area were less than 1.39% for all the compounds studied. These results suggested that it was feasible to analyze samples within 1 day.

Accuracy

Recovery tests were used to evaluate the accuracy of the method by analysis of spiked samples at one certain concentration level (approximately equivalent to 1.0 time to the concentration contained in the sample). The extracted solution was analyzed by the proposed HPLC method. Quantity of each compound was subsequently obtained by use of the corresponding calibration plots. The recoveries of analytes varied from 99.77% to 100.89% and RSD values were in the range of 0.20-1.75%, which demonstrated the reliability and accuracy for the measurement of these constituents.

Sample analysis

The developed method was applied to the simultaneous determination of chlorogenic acid, caffeic acid, apigenin-7-O-glucoside and rosmarinic acid in three batches of G. longituba samples obtained in different provinces in China. Each sample was determined in triplicate, and the peaks in chromatograms were identified by comparing the retention times and UV spectra with those of the standards. The contents were calculated and summarized (n = 3) in [Table 2]. According to the quantitative analysis results, we noticed that the total contents of four compounds varied in the same type of samples from different provinces, which might be due to the differences of growing condition and climate in each region. Thus it is necessary to control the main active components in G. longituba by good agricultural practice (GAP) and the norm of Chinese medicinal materials processing.
Table 2: Concentrations (%) of the four compounds in three batches of G. longituba


Click here to view



   Conclusions Top


This novel HPLC method for simultaneous quantitative analysis of four active components was established and validated for quality evaluation of G. longituba. Chlorogenic acid, caffeic acid, apigenin-7-O-glucoside and rosmarinic acid were considered as the marker components to evaluate the intrinsic quality of G. longituba methanol extract, and three batches of samples which collected from Zhejiang, Anhui and Jiangsu Provinces were analyzed. The newly developed method has achieved desired linearity, precision and accuracy, and has been elucidated to be a simple, sensitive, accurate and reliable procedure for quality control of G. longituba, which can also be further applied for the quantification of phenolic acids and flavonoids in its related processed drugs or preparations.


   Acknowledgments Top


The authors are grateful to the financial support of the Open Project of National First-Class Key Discipline for Science of Chinese Materia Medica, Nanjing University of Chinese Medicine (2011ZYX2-006), the National Natural Science Foundation of China (No.81202918, 81274056, 30873438 and 81173546), the International Science and Technology Cooperation Project of Jiangsu Province (No. BZ2011053), the Science and Technology of Chinese Medicine of Zhejiang Province (No. 2009CB008), the fund of Zhejiang Modernization of Traditional Chinese Medicine Item ((2008)436), the Chinese Medicine Research Program of Zhejiang Province (2008ZA002, 2011ZB101), and the Science Foundation of Zhejiang Chinese Medical University (7211093).

 
   References Top

1.Chinese Pharmacopoeia Commission, Pharmacopoeia of the People's Republic of China. Vol. 1. Beijing: Chemical Industry Press; 2010. p. 158.  Back to cited text no. 1
    
2.Kim J, Song S, Lee I, Kim Y, Yoo I, Ryoo I, et al. Anti-inflammatory activity of constituents from Glechoma hederacea var. Longituba. Bioorg Med Chem Lett 2011;21:3483-7.  Back to cited text no. 2
    
3.State Administration of TCM of the PRC, Chinese Medicinal Materials. Vol.7. Shanghai: Shanghai Technology Press; 1999. p. 6058.  Back to cited text no. 3
    
4.Yang NY, Duan JA, Li P, Qian SH. Chemical constituents of Glechoma Longituba. Yao Xue Xue Bao 2006;41:431-4.  Back to cited text no. 4
    
5.Zhu YD, Zou J, Zhao WM. Two new monoterpenoid glycosides from Glechoma longituba.J Asian Nat Prod Res 2008;10:199-204.  Back to cited text no. 5
    
6.She GM, Xu C, Liu B, Shi RB. Polyphenolic acids from mint (the aerial of menthe haplocalyx Briq.) with DPPH radical scavenging activity. J Food Sci 2010;75:359-62.  Back to cited text no. 6
    
7.Dorman HJ, Kosar M, Baser KH, Hiltunen R. Phenolic profile and antioxidant evaluation of mentha x piperita L. (peppermint) extracts. Nat Prod Commun 2009;4:535-42.  Back to cited text no. 7
    
8.Wu ZG, Xu HY, Ma Q, Cao Y, Ma JN, Ma CM. Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel. Food Chem 2012;135: 2425-9  Back to cited text no. 8
    
9.Zaabat N, Hay AE, Michalet S, Darbour N, Bayet C, Skandrani I, et al. Antioxidant and antigenotoxic properties of compounds isolated from Marrubium deserti de Noé. Food Chem Toxicol 2011;49:3328-35.  Back to cited text no. 9
    


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2]


This article has been cited by
1 An Explanation of the Underlying Mechanisms for the In Vitro and In Vivo Antiurolithic Activity of Glechoma longituba
Qiang Liang,Xiaoran Li,Wangning Zhou,Yu Su,Shenbao He,Shuanglei Cheng,Jianzhong Lu,Wenjuan Cao,Yuke Yan,Xiaxia Pei,Jin Qi,Guangli Xu,Zhongjin Yue
Oxidative Medicine and Cellular Longevity. 2016; 2016: 1
[Pubmed] | [DOI]
2 production of caffeic, chlorogenic and rosmarinic acids in plants and suspension cultures of< i> glechoma hederacea
d\"o
phytochemistry letters. 2014;
[Pubmed]
3 Production of caffeic, chlorogenic and rosmarinic acids in plants and suspension cultures of Glechoma hederacea
Anne Sarah Döring,Maike Petersen
Phytochemistry Letters. 2014; 10: cxi
[Pubmed] | [DOI]
4 Chemical composition and antioxidant activity of the ethanol extract and purified fractions of cadillo (Pavonia sepioides)
Cristian A. Gasca,Fabio A. Cabezas,Laura Torras,Jaume Bastida,Carles Codina
Free Radicals and Antioxidants. 2013;
[Pubmed] | [DOI]



 

Top
   
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
   Introduction
   Experimental Method
    Results and Disc...
   Conclusions
   Acknowledgments
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed1763    
    Printed87    
    Emailed1    
    PDF Downloaded15    
    Comments [Add]    
    Cited by others 4    

Recommend this journal