Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2013  |  Volume : 9  |  Issue : 34  |  Page : 120-129

Optimization of subcritical water extraction of polysaccharides from Grifola frondosa using response surface methodology


1 Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu, China
2 School of Pharmacy, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu, China
3 School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu, China
4 School of Environment, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu, China

Correspondence Address:
Xiangyang Wu
School of Environment, Jiangsu University, 301 Xuefu Rd., Zhenjiang, Jiangsu
China
Login to access the Email id

Source of Support: Graduate innovative projects in Jiangsu Province” (NO.CXLX11-0601)., Conflict of Interest: None


DOI: 10.4103/0973-1296.111262

Rights and Permissions

Background: This research is among the few that has been conducted on the feasibility of subcritical water extraction (SWE) as a rapid and efficient extraction tool for polysaccharides. Objective: The aim of the study was to extractand optimize the parameter conditions of SWE of polysaccharides from Grifola frondosa using response surface methodology. Materials and Methods: In the study, SWEwas applied to extractbioactive compounds from G. frondosa. A preliminary analysis was made on the physical properties and content determination of extracts using SWE and hot water extraction (HWE). Analysis of the sample residues and antioxidant activities of the polysaccharides extracted by SWE and HWE were then evaluated. Results: The optimal extraction conditions include: extraction temperature of 210°C, extraction time of 43.65 min and the ratio of water to raw material of 26.15:1. Under these optimal conditions, the experimental yield of the polysaccharides (25.1 ± 0.3%) corresponded with the mean value predicted by the model and two times more than the mean value obtained by the traditional HWE. The antioxidant activities of polysaccharides extracted by SWE were generally higher than those extracted by HWE.From the study, the SWE technology could be a time-saving, high yield, and bioactive technique for production of polysaccharides.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3997    
    Printed101    
    Emailed2    
    PDF Downloaded19    
    Comments [Add]    
    Cited by others 10    

Recommend this journal