Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2013  |  Volume : 9  |  Issue : 33  |  Page : 45-50

Phytochemical analysis and antibacterial evaluation of the ethyl acetate extract of the stem bark of Bridelia micrantha


1 Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa
2 Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa; Department of Biochemistry and Microbiology, Faculty of Science, University of Buea, Box 63, Buea, Cameroon

Correspondence Address:
Roland N Ndip
Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Fort Hare, P/Bag X1314, Alice 5700, South Africa.

Login to access the Email id

Source of Support: National Research Foundation South Africa (grant reference SUR2008052900010), and the Govan Mbeki Research and Development Centre, University of Fort Hare, South Africa., Conflict of Interest: None


DOI: 10.4103/0973-1296.108139

Rights and Permissions

Background : Plant cells fundamentally are chemical factories containing a rich supply of therapeutically useful phytocompounds that have the potential of being developed into potent antimicrobial agents. Aim of the Study: To investigate the antibacterial activity of fractionated extracts of the ethyl acetate extract of the stem bark of Bridelia micrantha (Hochst., Baill., Euphorbiaceae). Materials and Methods: Thin-layer chromatography and column chromatography were used to purify the extracts and antimicrobial activity performed on reference and clinical strains of Staphylococcus aureus, Shigella sonnei, Salmonella Typhimurium, and Helicobacter pylori using direct and indirect bioautographic methods respectively. Furthermore, the eluted compound fractions were then assayed for minimum inhibitory concentration (MIC 50 ) using the 96-well micro dilution technique. Results: Better separation of phytocompounds was obtained from the non-polar Benzene/Ethanol/Ammonia (BEA) and intermediate-polar Chloroform/Ethyl acetate/Formic acid (CEF) eluents compared to the polar Ethanol/Methanol/Water (EMW). Bioautography revealed the presence of three bioactive compounds (R f values; 0.12, 0.20, and 0.42) on the BEA plates, designated fractions 3, 7, and 8 with MIC 50 values; 0.0048mg/mL to 1.25mg/mL (fraction 3), 0.0024mg/mL to 5 mg/mL (fraction 7), and 0.0024mg/mL to 2.5mg/mL (fraction 8). Conclusion: Our findings demonstrate that ethyl acetate extract of the stem-bark of B. micrantha possess potent bioactive phytocompounds that may be developed into new antimicrobials.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4034    
    Printed106    
    Emailed2    
    PDF Downloaded32    
    Comments [Add]    
    Cited by others 2    

Recommend this journal