Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2012  |  Volume : 8  |  Issue : 29  |  Page : 4-11

Application of deoxyribonucleic acid barcoding in Lauraceae plants


1 Department of Pharmacy, The 309th Hospital of Chinese People's Liberation Army, Beijing; Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, Republic of China
2 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, Republic of China
3 Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Republic of China
4 Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan, Republic of China

Correspondence Address:
Ke-Li Chen
Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065
Republic of China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.93301

Rights and Permissions

Background: This study aims to determine the candidate markers that can be used as DNA barcode in the Lauraceae family. Material and Methods: Polymerase chain reaction amplification, sequencing efficiency, differential intra- and interspecific divergences, DNA barcoding gap, and identification efficiency were used to evaluate the four different DNA sequences of psbA-trnH, matK, rbcL, and ITS2. We tested the discrimination ability of psbA-trnH in 68 plant samples belonging to 42 species from 11 distinct genera and found that the rate of successful identification with the psbA-trnH was 82.4% at the species level. However, the correct identification of matK and rbcL were only 30.9% and 25.0%, respectively, using BLAST1. The PCR amplification efficiency of the ITS2 region was poor; thus, ITS2 was not included in subsequent experiments. To verify the capacity of the identification of psbA-trnH in more samples, 175 samples belonging to 117 species from the experimental data and from the GenBank database of the Lauraceae family were tested. Results: Using the BLAST1 method, the identification efficiency were 84.0% and 92.3% at the species and genus level, respectively. Conclusion: Therefore, psbA-trnH is confirmed as a useful marker for differentiating closely related species within Lauraceae.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed3509    
    Printed263    
    Emailed2    
    PDF Downloaded16    
    Comments [Add]    
    Cited by others 6    

Recommend this journal