Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2011  |  Volume : 7  |  Issue : 27  |  Page : 234-242

Circadian aspects of hyperthermia in mice induced by Aconitum napellus


1 Chronomics Research Center at Sección de Estudios de Posgrado e Investigación (SEPI)-Escuela Nacional de Medicina y Homeopatía (ENMyH), Instituto Politécnico Nacional (IPN), Mexico City, Mexico
2 The Rhythmometry Laboratory, Department of Plant Biology, College of Biological Sciences, University of Minnesota, St. Paul, MN, USA
3 Genética Molecular-Escuela Superior de Medicina-IPN, Mexico City, Mexico
4 SEPI-ENMyH-IPN, Mexico City, Mexico
5 Bioterio Central-Centro Médico Nacional, Mexico City, Mexico

Correspondence Address:
Salvador Sánchez de la Peña
Chronomics Research Center at Sección de Estudios de Posgrado e Investigación, ENMyH-IPN Guillermo Massieu Helguera No. 239 Ticomán, CP 07320, México City
Mexico
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.84238

Rights and Permissions

Background: Aconitum napellus (Acn) is used topically to relieve pain, itching and inflammation, and internally to reduce febrile states, among others. Any circadian time-related consequences of Acn administration are unknown. The objective of this study was to explore the effects of two doses of Acn on body temperature (BT) of mice treated at six different times over 24 hours. Materials and Methods: BALB/c female mice were housed in six chambers (six mice each) with air temperature 24 ± 3°C, humidity 60 ± 4%, and a 12-hours light (L)/12-hours dark cycle, but with L-onset staggered by 4 hours between chambers so that study at one external test time resulted in six test times (02, 06, 10, 14, 18 and 22 hours [h] after light onset). Rectal temperature (RT; in °C) was measured at baseline (B) and 1 hour after oral treatment with placebo (P) or two doses of Acn (6C and 30C, two studies each) in six studies over an 8 day span. The difference in RT for each mouse from the respective B + P timepoint mean RT was computed following each Acn treatment, and data from each of the six studies (original RT and difference from B + P) were analyzed for time-effect by analysis of variance (ANOVA) and for circadian rhythm by 24-hour cosine fitting. Results: A circadian rhythm in RT was found at B and after P (mean: 35.58°C vs. 35.69°C; peak: 15:31 h vs. 15:40 h) and after each Acn dose (30C or 6C). Acn induced hyperthermia and the overall change in BT was rhythmically significant for each dose (mean = +1.95°C vs. +1.70°C), with greatest hyperthermia observed during the L-span for each dose (peak = 08:56 h vs. 05:17 h). Conclusion: Acn administered around the clock induced hyperthermia overall and in a time-dependent manner, with greatest effects during the resting (L) span. Thus, time of day may significantly impact the outcome of Acn and other homeopathic treatments and should be considered in determining optimal dosing and treatment time(s) in order to increase the desired outcome and decrease undesired effects.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4939    
    Printed209    
    Emailed0    
    PDF Downloaded16    
    Comments [Add]    
    Cited by others 1    

Recommend this journal