Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 
ORIGINAL ARTICLE
Year : 2011  |  Volume : 7  |  Issue : 27  |  Page : 200-206

Generation of autotetraploid plant of ginger (Zingiber officinale Rosc.) and its quality evaluation


1 Department of Genetics and Breeding, China Pharmaceutical University, Nanjing, Jiangsu - 211198; Guangxi key Laboratory of Medicinal Resources Conservation and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi - 530023, People's Republic of China
2 Guangxi key Laboratory of Medicinal Resources Conservation and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi - 530023, People's Republic of China
3 Anhui University of Traditional Chinese Medicine, Hefei, Anhui - 230031, People's Republic of China
4 Department of Genetics and Breeding, China Pharmaceutical University, Nanjing, Jiangsu - 211198, People's Republic of China

Correspondence Address:
Gao Shan-Lin
Nanjing, Jiangsu - 211 198
People's Republic of China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.84230

Rights and Permissions

Background: Zingiber officinale Rosc. is not only an important medical plant in China, but also one of the most commonly used plant spices around the world. Early researches in Z. officinale Rosc. were focused on rapid propagation, germplasm preservation, and somatic embryogenesis, only a few reports focused on the generation of tetraploid ginger plants with colchicines treatment in vitro. Materials and Methods: The adventitious buds were submerged into different concentrations of colchicine water solution for different time to induce polyploid plants, and the induced buds were identified by root-tip chromosome determination and stomatal apparatus observation. Eighteen selected tetraploid lines were transferred to the field, and the leaf characteristics, rhizome yield, contents of volatile oil and gingerol were respectively evaluated to provide evidence of high-yield and good qualities of tetraploid ginger. Results: The induction rate reached as high as 33.3% of treated buds. More than 48 lines of autotetraploid plants were obtained. All tetraploid plants showed typical polyploidy characteristics. All of the 18 selected tetraploid lines possessed higher rhizome yield and overall productivity of volatile oil and gingerol than those of the control. Conclusion: Five elite lines have been selected for further selection and breeding new varieties for commercial production in agricultural production.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4259    
    Printed207    
    Emailed0    
    PDF Downloaded14    
    Comments [Add]    
    Cited by others 9    

Recommend this journal