Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 


 
ORIGINAL ARTICLE
Year : 2010  |  Volume : 6  |  Issue : 23  |  Page : 208-211 Table of Contents     

Essential oil constituents of Illicium griffithii and its antimicrobial activity


1 Department of Chemistry, Captain Srinivasa Murti Research Institute for Ayurveda & Siddha Drug Development (CCRAS), Arignar Anna Hospital Campus, Arumbakkam, Chennai-600 106, Tamil Nadu, India
2 Department of Microbiology, Captain Srinivasa Murti Research Institute for Ayurveda & Siddha Drug Development (CCRAS), Arignar Anna Hospital Campus, Arumbakkam, Chennai-600 106, Tamil Nadu, India

Date of Submission09-Jan-2010
Date of Decision07-Feb-2010
Date of Web Publication30-Jul-2010

Correspondence Address:
A Saraswathy
Captain Srinivasa Murti Research Institute for Ayurveda & Siddha Drug Development (CCRAS), Arignar Anna Hospital Campus, Arumbakkam, Chennai-600 106, Tamil Nadu
India
Login to access the Email id

Source of Support: ICMR, New Delhi, Conflict of Interest: None


DOI: 10.4103/0973-1296.66938

Rights and Permissions
   Abstract 

The essential oil of the fruit of Illicium griffithii Hook f. et Thoms. was extracted using Clevenger's apparatus. Forty-one compounds were characterized by gas chromatography-mass spectroscopy (GC-MS). 4-Methyl-6-(2-propenyl)-1,3-benzodioxole was characterized as the major constituent, followed by linalool amongst the volatile constituents. The essential oil was found to be effective against Aspergillus niger, Penicillium spp. and Saccharomyces cerevisiae and possessed considerable activity against Staphylococcus aureus and was inactive against Klebsiella pnemoniae, Pseudomonas aureginosae, Proteus vulgaris and Escherichia coli.

Keywords: Antifungal activity, essential oil, gas chromatography-mass spectroscopy, Illicium griffithii, linalool


How to cite this article:
Saraswathy A, Shakila R, Lavanya S M, Arunmozhidevi A. Essential oil constituents of Illicium griffithii and its antimicrobial activity. Phcog Mag 2010;6:208-11

How to cite this URL:
Saraswathy A, Shakila R, Lavanya S M, Arunmozhidevi A. Essential oil constituents of Illicium griffithii and its antimicrobial activity. Phcog Mag [serial online] 2010 [cited 2019 Nov 14];6:208-11. Available from: http://www.phcog.com/text.asp?2010/6/23/208/66938


   Introduction Top


Illicium griffithii Hook. f. et Thoms. belongs to Illiciaceae family. It is a large shrub o13f 3-4.5 m height, found at an altitude of 1400-1700 m in northeastern states of India, Khasi hills and Bhutan. Its fruit is composed of compressed, beaked, incurved carpels, each containing one seed arranged in a single whorl. The fruit has a slightly aromatic, bitter and astringent taste. It is used as a stimulant and carminative. [1] Linalool, limonene, α-pinene, 1,8-cineole, ρ-methoxyphenyl acetone, terpinen-4-ol, (E0)-anethole, safrole, germacrene B, cadinol, myristicin, α-selinene, δ-selinene, α-santalene, β-phellandandrene,[2],[3],[4] elemicin, (E)-caryophyllene and eugenol derivatives [5] were reported previously as the chemical constituents of the essential oil of I. griffithii, among which linalool was the major constituent. [2] p-Menth-1(7),4(8)-diene-3-O-β-D-glucoside was also reported to be present in the fruit. [6] The present study reports 41 volatile constituents from the essential oil of the fruit of I. griffithii and its antimicrobial activity.


   Materials and Methods Top


Plant material

The dried fruit of I. griffithii was procured from Arunachal Pradesh, India, and was identified by National Botanical Research Institute, Lucknow. A voucher specimen (no. I/145ICMR88) was deposited in the museum of this institute.

Instrument

Shimadzu GC 2010 was the instrument used for gas chromatography-mass spectroscopy (GC-MS) analysis. The constituents were identified by comparison of the mass fragments with the spectrum library NIST/EPA/NIH.

Test organisms

Organisms such as Klebsiella pnemoniae (ATCC 700603), Pseudomonas aureginosae (ATCC 27853),  Escherichia More Details coli (ATCC 25922), Proteus vulgaris (ATCC 9484) and Staphylococcus aureus (ATCC 25923) were used for the study. The organisms were procured from Christian Medical College, Vellore, and were maintained by serial sub-culturing every month on nutrient agar slants and incubating at 37ºC for 18-24 hours. The cultures were stored under refrigerated condition. The antifungal activity of the oil was tested against Aspergillus niger, Penicillium spp. (both were isolated from soil) and Saccharomyces cerevisiae (isolated from dough). [7],[8],[9] Isolation and identification of the fungus was done by the microbiologist of this institute.

Extraction of essential oil

Exactly 200 g of the dried fruit of I. griffithii was coarsely powdered and transferred in to a 2-1 round bottom flask. Sufficient amount of water was added and fixed with Clevenger's apparatus. This was boiled for 4 h and the steam-distilled essential oil (yield 0.85%) was collected, then dried over anhydrous sodium sulfate, transferred into an airtight sample tube and stored at 8ºC.

Gas chromatography-mass spectroscopy analysis of the essential oil

One microliter of the essential oil of the fruit was injected into GC. The injector temperature was maintained at 250ºC. The detector used was flame ionization detector which was maintained at 280ºC. The pressure of the carrier gas, nitrogen, was kept at 10 psi. The oven temperature was set at 60-280ºC with a gradual increment of 10ºC/min. The injected oil was eluted in the DB-5 MS column of 30 m length and 0.25 mm inner diameter and the eluted constituents were detected by flame ionization detector and the GC chromatogram was recorded [Figure 1].

Antibacterial activity

Antibacterial activity was determined by the well diffusion method. [10] Petri plates containing 25 ml of nutrient agar medium were seeded with a 24-h culture of the bacterial strains. The inoculum's size was adjusted so as to deliver a final inoculum of approximately 108 colony-forming units (CFU/ml). Wells (6 mm diameter) were made on solidified inoculated nutrient agar plates by using sterile plunger. Ten and 20 μl of the oil were transferred aseptically to the subsequent wells and labeled. Standard disc of ampicillin 30 μg (positive control) was placed on the inoculated plate to evaluate the potency of the oil. The plates were left undisturbed for 15 min at room temperature to aid in seeping of the oil and then the plates were incubated at 37ºC for 24 h. The zone of inhibition was measured in millimeters.

Antifungal activity

The antifungal activity was tested by agar diffusion method. [11],[12] Petri plates containing 25 ml of Sabouraud dextrose agar (SDA) medium were seeded with a 7-day old culture of fungus organisms. Wells (6 mm diameter) were made on solidified inoculated SDA plates by using sterile plunger. Ten and 20 μl of the oil were transferred aseptically to the subsequent wells and labeled. Standard disc of 30 μg of amphotericin B was loaded as a reference antifungal drug. The plates were incubated at 25 ± 2ºC for 5 days. The zone of inhibition was measured in millimeters.


   Results Top


The volatile oil constituents along with their retention time and percentage obtained from the GC-MS analyzer are given in [Table 1]. The spectrum obtained is shown in the [Figure 1]. Forty-one constituents were identified by the detector.

The essential oil obtained from I. griffithii was tested for its antibacterial activity against five strains, viz., K. pnemoniae (ATCC 700603), Ps. aureginosae (ATCC 27853), E. coli (ATCC 25922), Pr. vulgaris (ATCC 9484) and St. aureus (ATCC 25923) and for the antifungal activity against A. niger, Penicillium spp. and Sa. cerevisiae. [Table 2] and [Table 3] show the results of the observed antibacterial and antifungal activities, respectively.


   Discussion Top


Of the 41 constituents identified, the percentage content of 4-methyl-6-(2-propenyl)-1,3-benzodioxole and linalool were observed to be 22.64 and 12.05%, respectively, whereas the content of caryophyllene, safrol, β-bourbonen, isoledene, δ-murolene, α-candinol, epizonaren were found to be <5%. Other constituents were <1%.

Ten and 20 μl of the oil showed antibacterial activity only against St. aureus and the inhibition zone was 14 mm and the positive control showed the inhibition zone ranging from 13 to 14 mm against K. pneumoniae, Ps. aureginosae, E. coli, Pr. vulgaris and St. aureus. There was no considerable change in inhibition found by increasing the concentration of the oil and thus the bacterial strains like K. pneumoniae, Ps. aureginosae, E. coli, Pr. vulgaris were susceptible to the oil.

Ten and 20 μl oil showed appreciable antifungal activity against A. niger, Penicillium spp. and Sa. cerevisiae. The inhibition zone of the oil for both the concentrations varied from 9 to 13 mm while for the positive control it was in the range of 10-12 mm. The results of the antifungal activity are shown in [Table 3].


   Conclusion Top


The essential oil isolated from I. griffithii was found to contain 41 volatile constituents, of which 4-methyl-6-(2-propenyl)-1,3-benzodioxole and linalool were the major compounds. The oil has significant activity against spoilage fungus A. niger, Penicillium spp. and Sa. cerevisiae and was active against the bacterial strain St. aureus. Therefore, it can be concluded that the oil can effectively be used as an antifungal agent and a food preservative, after detailed research.


   Acknowledgment Top


Authors are thankful to ICMR, New Delhi for financial assistance and Director General, CCRAS, New Delhi for facilities.

 
   References Top

1.Kirtikar KR, Basu BD. Indian Medicinal Plants. 2 nd ed, Vol. 1. Delhi: Jayyed Press; 1975. p. 60.  Back to cited text no. 1      
2.Dung NX, Chinh ND, Leclercq PA. Volatile oil constituent of the fruit of Illicium griffithii Hook.f.et. Thoms. from Vietnam. J Essent Oil Res 1995;7:451-2.  Back to cited text no. 2      
3.Dutta SC, Saha BN, Pathak MG, Kanjilal PB, Mathur RK. Essential oil of Illicium griffithii Hook.f. and Thoms. J Essent Oil Res 1997;9:227-8.   Back to cited text no. 3      
4.Agarwal SK, Siddiqui MS, Jain SP, Sushilkumar S. Chemotaxonomical study of Indian Illicium griffithii and Illicium verum fruits. J Med Aromat Plants Sci 1999;21:945-6.   Back to cited text no. 4      
5.Howes MJ, Kite GC, Simmonds MS. Distinguishing Chinese star anise from Japanese star anise using thermal desorption - gas chromatography - mass spectrometry. J Agric Food Chem 2009;57:5783-9.  Back to cited text no. 5  [PUBMED]  [FULLTEXT]  
6.Agarwal SK, Sammal SS, Haneef M, Kumar S. A new monoterpenoid-glucoside from Indian Illicium griffithii. Indian J Chem B 2002;41:675-6.   Back to cited text no. 6      
7.NCCLS. Performance standards for antimicrobial disc suspectibility tests. Villanova, PA, USA: Approved Standard NCCLS Publication M2-A5; 1993.  Back to cited text no. 7      
8.Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST. Bergey's manual of determinative bacteriology. 9 th ed. Baltimore: Williams and Wilkins; 1994. p.518-37.  Back to cited text no. 8      
9.Suhail M, Akhund S, Jatt T, Mangrio AM, Abro H. Isolation and identification of Pencillium spp., from the river Indus bed at Kotri. Pak J Bot 2006;38:1289-92.  Back to cited text no. 9      
10.Nahvi I, Emtiazi G, Alkabi L. Isolation of a flocculating Saccharomyces cerevisiae and investigation of its performance in the fermentation of beet molasses to ethanol. Biomass and Bioenergy 2002;23:481-6.Tepe B, Daferera D, Sokmen A, Sokmen M, Polissiou M. Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chem 2005;90:333-40.   Back to cited text no. 10      
11.Gurgel LA, Sidrim JJC, Martins DT, Cechinel Filho V, Rao VS. In vitro antifungal activity of dragon's bloo d from Croton urucurana against dermatophytes. J Ethnopharmacol 2005;97:409-12.   Back to cited text no. 11      
12.Fontenelle1 RO, Morais SM, Brito EH, Kerntopf MR, Brilhante RS, Cordeiro RA, et al. Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. J Antimicrob Chemother 2007;59:934-40.  Back to cited text no. 12      


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]


This article has been cited by
1 Illicium griffithii Hook. f. & Thoms.-A potential source of natural off-farm income to the rural people of Arunachal Himalaya, India
Paul, A. and Kalita, J. and Khan, M.L. and Tripathi, O.P.
Indian Journal of Natural Products and Resources. 2013; 4(2): 131-137
[Pubmed]
2 Fumigant activity of volatiles from Streptomyces alboflavus TD-1 against Fusarium moniliforme Sheldon
Zhifang Wang,Changlu Wang,Fengjuan Li,Zhenjing Li,Mianhua Chen,Yurong Wang,Xi Qiao,Hong Zhang
Journal of Microbiology. 2013; 51(4): 477
[Pubmed] | [DOI]
3 Phytochemical analysis and in vitro antimicrobial activity of Illicium griffithii Hook. f. & Thoms extracts
A Vijayakumar,V Duraipandiyan,B Jeyaraj,P Agastian,M Karunai Raj,S Ignacimuthu
Asian Pacific Journal of Tropical Disease. 2012; 2(3): 190
[Pubmed] | [DOI]
4 Phytochemical analysis and in vitro antimicrobial activity of Illicium griffithii Hook. f. & Thoms extracts
Vijayakumar, A. and Duraipandiyan, V. and Jeyaraj, B. and Agastian, P. and Raj, M.K. and Ignacimuthu, S.
Asian Pacific Journal of Tropical Disease. 2012; 2(3): 190-199
[Pubmed]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Introduction
    Materials and Me...
    Results
    Discussion
    Conclusion
    Acknowledgment
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed3856    
    Printed185    
    Emailed1    
    PDF Downloaded95    
    Comments [Add]    
    Cited by others 4    

Recommend this journal