Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 


 
ORIGINAL ARTICLE
Year : 2010  |  Volume : 6  |  Issue : 23  |  Page : 154-158 Table of Contents     

A validated high performance liquid chromatography method for the analysis of thymol and carvacrol in Thymus vulgaris L. volatile oil


1 Traditional Medicine and Materia Medica Research Center and Department of Traditional Pharmacy, School of Traditional Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Department of Research and Development, Food and Drug Control Laboratories and Food and Drug Laboratory Research Center, MOH & ME, Tehran, Iran
3 Department of Pharmacognosy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
4 Department of Pharmacognosy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran

Date of Submission13-Jan-2010
Date of Decision05-Feb-2010
Date of Web Publication30-Jul-2010

Correspondence Address:
M Shekarchi
Food and Drug Control Laboratories and Food and Drug Laboratory Research Center, MOH & ME, Tehran
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/0973-1296.66927

Rights and Permissions
   Abstract 

Thymus vulgaris L. (Lamiaceae) is a well-known medicinal plant that contains important compounds such as thymol and carvacrol and it has been used in many pharmaceutical dosage forms. Thymol and carvacrol in essential oils are often quantified by gas chromatography (GC) technique but in this work, a validated and reliable high performance liquid chromatography (HPLC) method has been developed for the analysis of these two components in T. vulgaris essential oil. The essential oil of the plant was analyzed by HPLC and GC techniques. The HPLC system consisted of ACE C 18 column and an isocratic acetonitrile:water (50:50) as the mobile phase which was kept at a flow rate of 1 ml/min. The method was validated for selectivity, linearity (r2 > 0.997 for both thymol and carvacrol), precision (intra-day 0.8-1.9, 1.7-2.6; and inter-day 3.5-4.5, 3.6-4.7) and recovery (97.7%, 97.6%) for thymol and carvacrol, respectively. The limits of detection (LODs) and limits of quantization (LOQs) were calculated to be 2.8, 0.6 μg/ml and 8.6, 1.8 μg/ml for thymol and carvacrol, respectively. The GC system consisted of flame ionization detector (FID) and CP-SIL 8 column. The concentrations of thymol and carvacrol in essential oil obtained by HPLC (41.2%, 4.3%) and GC (40.7%, 4.2%) were compared by statistical methods and they showed good agreement.

Keywords: Carvacrol, gas chromatography, high performance liquid chromatography, thymol, Thymus vulgaris, validation


How to cite this article:
Hajimehdipoor H, Shekarchi M, Khanavi M, Adib N, Amri M. A validated high performance liquid chromatography method for the analysis of thymol and carvacrol in Thymus vulgaris L. volatile oil. Phcog Mag 2010;6:154-8

How to cite this URL:
Hajimehdipoor H, Shekarchi M, Khanavi M, Adib N, Amri M. A validated high performance liquid chromatography method for the analysis of thymol and carvacrol in Thymus vulgaris L. volatile oil. Phcog Mag [serial online] 2010 [cited 2017 Apr 29];6:154-8. Available from: http://www.phcog.com/text.asp?2010/6/23/154/66927


   Introduction Top


The genus of Thymus comprises 300-400 species, some of which are used in folk medicine. The main medicinal Thymus is Thymus vulgaris (common thyme) which is used for dry coughs, bronchitis, laryngitis, indigestion and gastritis. [1],[2]There are also some reports about antimicrobial effects of Thymus essential oil. [3] It has been demonstrated that the biological effects of T. vulgaris are mainly due to the presence of phenolic compounds, especially thymol and carvacrol [Figure 1]. [2],[4] Thymol content in thyme essential oil is much higher than carvacrol content. This compound shows 30 times higher antiseptic effect and four times lower toxicity than phenol. [5],[6] Since these two phenolic components of the plant are considered as active constituents, most of the pharmaceutical dosage forms are standardized according to their thymol or carvacrol contents. Therefore, introducing a validated method for the assay of these compounds should be considered. Gas chromatography (GC) is the most popular method for analysis of herbal volatile components, [1],[7],[8],[9] but it is not possible to determine thymol and carvacrol in pharmaceutical dosage forms directly. Therefore, usage of other methods in quantization of volatile compounds in complicated matrixes is obligated. [10],[11],[12] High performance liquid chromatography (HPLC) is one of the most precise techniques for quantitative determination of plant constituents, which is used for volatile and non-volatile compounds. [13],[14] In this research, a validated HPLC method for the assay of thymol and carvacrol in T. vulgaris volatile oil has been introduced and concentrations of these two phenolic compounds in the essential oil which were measured by the new HPLC technique compared with those obtained by GC method.


   Materials and Methods Top


Plant material

Aerial parts of T. vulgaris were collected in July 2008 from Gorgan (Golestan province) and identified by M. Khatamsaz, Botanist, Research Institute of Forests and Rangelands, Tehran, Iran.

Isolation of essential oil

The air-dried and powdered aerial parts of the plant were subjected to hydro-distillation for 4 h using a Clevenger type apparatus. The obtained essential oil was dried with anhydrous sodium sulfate and stored at +4°C before using.

Chemicals

Thymol and carvacrol standard materials were purchased from ROTH (Karlsruhe, Germany). All the solvents prepared were from Merck (Darmstadt, Germany).

Instrumentation

HPLC experiment was performed using a Waters Alliance system equipped with a vacuum degasser, quaternary solvent mixing, auto-sampler and a waters 2996 diode array detector. UV spectra were collected across the range of 200-900 nm, extracting 274 nm for chromatograms. Empower software was utilized for instrument control, data collection and data processing. The column used was an ACE C 18 (4.6 Χ 250 mm, 5 μm). The mobile phase was an isocratic combination of acetonitrile (ACN):H 2 O (50:50) with a flow rate of 1 ml/min. Injection volume for all samples and standard solutions was 10 μl.

GC was carried out using a Varian CP-3800 GC with a capillary column CP-SIL8 (60 m Χ 0.25 mm i.d., 0.25 μm f.t.). The carrier gas used was N2 at a flow rate of 1 ml/min and a split ratio 1:30. A flame ionization detector (FID) was used. The column temperature was programmed at 50°C for 1 min and then heated to 265°C at a rate of 2.5°C/min; injector temperature was 260°C, detector temperature was 300°C, H 2 flow was 30 ml/min and air flow was 300 ml/min.

High performance liquid chromatographic quantization of thymol and carvacrol

Sample preparation

Ten milligrams of essential oil was added to a volumetric flask and diluted to 100 ml with ACN:H 2 O (80:20) (100 μg/ml). Six samples were prepared and each one was injected three times.

Preparation of standard solutions

Stock solutions of thymol (3 mg/ml) and carvacrol (0.3 mg/ml) were prepared separately in ACN:H 2O (80:20) solvent. Different concentrations (15-90 μg/ml for thymol and 2-9 μg/ml for carvacrol) were made from stock solutions to plot the calibration curves of thymol and carvacrol.

Validation

The reliability of HPLC method for analysis of thymol and carvacrol was established through its linearity, selectivity, precision and recovery.

Linearity

Due to verification of the normal distribution of the results, linearity was evaluated through the relationship between the concentration of thymol and carvacrol and the absorbance obtained from UV-HPLC detector. The determination coefficient (r2 ) was calculated by means of the leastsquares analysis. The calibration line was achieved through two replicates of each concentration of thymol or carvacrol to know the extent of the total variability of the response that could be explained by the linear regression model.

Limit of detection and limit of quantization

Limits of detection (LODs) and limits of quantization (LOQs) were calculated using the expressions 3.3σ/s and 10σ/s, respectively, in which σ is intercept standard deviation and s is the slope of calibration curve. [14],[15]

Selectivity

For chromatographic method, developing a separation involves demonstrating specificity which is the ability of the method to accurately measure the analyte response in the presence of all interferences. So, the solutions obtained from sample preparation were analyzed and the analytes' peaks (thymol and carvacrol) were evaluated for peak purity and resolution from the nearest eluting peak.

Precision

The precision of each method indicates the degree of dispersion within a series of determinations of the same sample. Three samples in three levels (80, 100, 120%) were analyzed on the same day (intra-day) and for three consecutive days (inter-day) and the relative standard deviations (RSD%) were calculated. Three samples for each level were prepared and each one was injected to HPLC three times.

Recovery

This parameter shows the proximity between the experimental values and the real ones. It ensures that no loss or uptake occurred during the process. The determination of this parameter was performed for the method by studying the recovery after a standard addition procedure with two additional levels. The concentrations of standards added to the samples were 20 and 50 μg/ml for thymol and 2 and 5 μg/ml for carvacrol. In each additional level, three determinations were carried out and the recovery percentage was calculated in every case. Each sample was injected to HPLC three times.

Gas chromatographic quantization of thymol and carvacrol

Sample preparation

Seventy-five milligrams of essential oil was added to a volumetric flask and diluted to 5 ml with hexane. Six samples were prepared and each one was injected to GC instrument three times.

Preparation of standard solutions

Stock solutions of thymol (20 mg/ml) and carvacrol (2 mg/ml) were prepared in hexane and serial dilutions (2-10 mg/ml for thymol and 0.2-1 mg/ml for carvacrol) were made using stock solutions. The internal standard used was 4-isopropylphenol.

Statistical analysis

Data were reported as mean ± SD. The results were analyzed statistically by SPSS software and the Student's t-test with level of significance set at P < 0.05.


   Results and Discussion Top


GC is a common method for the assay of thymol and carvacrol in essential oils and many studies have reported this technique for the quantization of above-mentioned compounds. [1],[7],[8] But it has some limitations to be used for complicated samples; therefore, this research has been focused on the separation and quantization of thymol and carvacrol by validated HPLC method in T. vulgaris essential oil and the results of HPLC method were compared with those of GC technique by statistical analysis.

Thymol and carvacrol peaks were observed in retention times 29.4 and 29.8 min in the GC chromatogram of the essential oil and were well separated. Quantization results showed 40.7 ± 0.6% thymol and 4.2 ± 0.1% carvacrol in T. vulgaris L. essential oil [Table 1].

The results of quantitative determination of the two main components of the essential oil by HPLC method demonstrated that thymol and carvacrol peaks were well resolved from each other and displayed excellent peak symmetry and separation efficiency as seen in [Figure 2]. By using HPLC method, the concentrations of thymol and carvacrol in the essential oil were calculated to be 41.2 ± 0.4 and 4.3 ± 0.1%, respectively [Table 1]. The results obtained from GC and HPLC techniques showed good agreement between two methods (P > 0.05).

Method development

The mobile phase was chosen after several trials with water, methanol and ACN. Finally, a mobile phase consisting ACN:H 2 O (50:50) in an isocratic mode was selected to achieve maximum separation. Flow rates were arranged between 0.5 and 1.5 ml/min. A flow rate of 1 ml/min gave an optimum signal/noise ratio with a reasonable separation time (15 min). After comparison between different columns such as C 8 , C 18 and CN, the best separation efficiency was obtained using C 18 column. The retention times for carvacrol and thymol were observed to be 13.1 and 14.4 min, respectively. UV spectrum of thymol and carvacrol showed maximum absorption at 274 nm; therefore, the compounds were monitored at this wavelength using photodiode array detector [Figure 2].

In a similar investigation on thymol and carvacrol in Molsa chinensis, ODS column was used with methanol:water:acetic acid (60:40:2) as the mobile phase. The method was validated according to standard validation parameters and it was found to be reliable. [12] This proposed method was tried for analysis of thymol and carvacrol in T. vulgaris essential oil but it was not efficient for the separation of two isomers in the above-mentioned plant.

Essential oils contain many components which are usually dissolved in non-polar solvents. [16] In order to achieve best separation of components in HPLC method, the solvent of the sample and mobile phase should be similar. Since the T. vulgaris essential oil was not soluble in ACN:H 2 O (50:50), different proportions of ACN:H 2 O were tried and finally 80:20 of ACN:H 2 O was selected for dissolving the sample. In a study performed by Solinas and Gessa for analyzing thymol and carvacrol in Thymus capitatus by HPLC, all the samples were prepared in methanol which is not similar to the mobile phase (ACN:H 2 O). This is a probable reason for overlapping of thymol and carvacrol peaks in the chromatogram of the essential oil. [17]

Validation procedure

The results obtained from method validation for thymol and carvacrol assay according to linearity, selectivity, precision and accuracy showed that the proposed method was reliable [Table 2]. Excellent linearity was obtained for thymol and carvacrol between peak areas and concentrations 15-90 μg/ml with r 2 = 0.9992 for thymol and 2-9 μg/ml with r2 = 0.9979 for carvacrol. Thymol and carvacrol peaks in the sample and the standard chromatographs were spectrally similar and pure. The three-dimensional and contour plot views of the chromatograms also confirmed the complete separation. LODs and LOQs were calculated as 2.8, 0.6 μg/ml and 8.6, 1.8 μg/ml for thymol and carvacrol, respectively. The precision results for analysis of thymol and carvacrol showed RSD% ≤ 1.9 and 2.6 for intra-day and RSD% ≤ 4.5 and 4.7 for inter-day precision for thymol and carvacrol, respectively, which are reasonable. Accuracy, which was evaluated as recovery after spiking the essential oil with standards at two levels, was found to be 97.7 and 97.6% for thymol and carvacrol, respectively [Table 3].


   Conclusion Top


This newly established method was validated to be selective, precise and accurate for the quantitative analysis of thymol and carvacrol, the most active components in T. vulgaris. It is concluded that this method is not only a useful tool for the assay of these components in T. vulgaris essential oil but also an effective quality control method to assay thymol and carvacrol in Thymus pharmaceutical dosage forms which could not be analyzed by GC. This method can be considered as a good alternative to the already existing methods for the analysis of these compounds in plants.

 
   References Top

1.Rustaiyan A, Lajevardi T, Rabbani M, Yari M, Masoudi Sh. Chemical constituents of the essential oil of Thymus kotschyanus Boiss. and Hohen. From Iran. Daru. 1999;7:27-8.  Back to cited text no. 1      
2.Blumenthal M. Herbal Medicine, Expanded Commission E Monographs. Newton: Integrative Communications; 2000.  Back to cited text no. 2      
3.Rahimifard N, Sabzevari O, Pakzad SR, Ajdari S, Pirali Hamedani M, Hajimehdipoor H, et al. Antifungal activity of the native essential oil of Thymus vulgaris on Candida albicans, Aspergillus niger and Aspergillus flavus from Iran. J Pure Appl Microbiol 2008;2:343-6.  Back to cited text no. 3      
4.Cherallier A. The Encyclopedia of Medicinal Plants. London: Dorling Kindersley Limited; 1996.  Back to cited text no. 4      
5.Zekovic Z, Lepojevic Z, Vujic Dj. Supercritical extraction of thyme (Thymus vulgaris L.). Chromatographia 2000;51:175-9.  Back to cited text no. 5      
6.Hajimehdipoor H, Khanavi M, Zahedi H, Abedi Z, Kalantari Khandani N, Adib N, et al. Fingerprint study of Thymus spp. by TLC. J Med Plants 2009;8:19-24.  Back to cited text no. 6      
7.Tόmen G, Kirimer N, BaΊer. Composition of the essential oils of Thymus species growing in Turkey. Chem Nat Compd 1995;31:42-7.  Back to cited text no. 7      
8.Miceli A, Negro C, Tommasi L. Essential oil variability in Thymbra capitata (L.) Cav. growing wild in Southern Apulia (Italy). Biochem Syst Ecol 2006;34:528-35.  Back to cited text no. 8      
9.Hajimehdipoor H, Zahedi H, Kalantari Khandani N, Abedi Z, Pirali Hamedani M, Adib N. Investigation of α and β-thujone content in common wormwood from Iran. J Med Plants 2008;7:40-4.   Back to cited text no. 9      
10.Kohlert C, Abel G, Schmid E, Veit M. Determination of thymol in human plasma by automated headspace solid-phase microextraction-gas chromatographic analysis. J Chromat B Analyt Technol Biomed Life Sci 2002;767:11-8.  Back to cited text no. 10      
11.Ternes W, Gronemeyer M, Schwarz K. Determination of p-cymen-2,3-diol, thymol and carvacrol in different foodstuffs. Z Lebensm Unters Forsch 1995;201:544-7.  Back to cited text no. 11      
12.Ji L, Wang F, Liu YY, Tong Y, Li XD, Feng XF, et al. Determination of carvacrol and thymol in Molsa chinensis by HPLC. Zhongguo Zhong Yao Za Zhi 2004;29:1030-2.  Back to cited text no. 12      
13.Krause EL, Ternes W. Bioavailability of the antioxidative thyme compounds thymol and p-cymene-2,3-diol in eggs. Eur Food Res Technol 1999;209:140-4.  Back to cited text no. 13      
14.Shekarchi M, Hajimehdipoor H, Khanavi M, Adib N, Bozorgi M, Akbari-adergani B. A validated method for analysis of Swerchirin in Swertia longifolia by high performance liquid chromatography. Phcog Mag 2010;6:13-8.   Back to cited text no. 14  [PUBMED]  Medknow Journal  
15.ICH Topic Q2B, Validation of Analytical Procedures: Methodology (CPMP/ICH/281/95). London; 6 November 1996.  Back to cited text no. 15      
16.Evans EC. Trease and Evanse' Pharmacognosy. 14 th ed. London: WB Saunders Company Ltd; 1996.  Back to cited text no. 16      
17.Solinas V, Gessa C. High-performance liquid chromatographic analysis of carvacrol and thymol in the essential oil of Thymus capitatus. J Chromatogr 1981;219:332-7.  Back to cited text no. 17      


    Figures

  [Figure 1], [Figure 2]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]


This article has been cited by
1 Extraction and Antibacterial Properties of Thyme Leaf Extracts: Authentic Practice of Green Chemistry
Sean C. Purcell,Prithvi Pande,Yingxin Lin,Ernesto J. Rivera,Latisha Paw U,Luisa M. Smallwood,Geri A. Kerstiens,Laura B. Armstrong,MaryAnn T. Robak,Anne M. Baranger,Michelle C. Douskey
Journal of Chemical Education. 2016;
[Pubmed] | [DOI]
2 Application of Optimized Vortex-Assisted Surfactant-Enhanced DLLME for Preconcentration of Thymol and Carvacrol, and Their Determination by HPLC-UV: Response Surface Methodology
Mehrorang Ghaedi,Mostafa Roosta,Saeid Khodadoust,Ali Daneshfar
Journal of Chromatographic Science. 2015; 53(7): 1222
[Pubmed] | [DOI]
3 Essential oils show specific inhibiting effects on bacterial biofilm formation
Sandra Szczepanski,André Lipski
Food Control. 2014; 36(1): 224
[Pubmed] | [DOI]
4 Correlation between phenolic compounds and antioxidant activity of Anzer tea (Thymus praecox Opiz subsp. caucasicus var. caucasicus)
Emine Akyüz Turumtay,Fatih Islamoglu,Derya Çavus,Huseyin Sahin,Halbay Turumtay,Bartel Vanholme
Industrial Crops and Products. 2014; 52: 687
[Pubmed] | [DOI]
5 Stability of Essential Oils: A Review
Claudia Turek,Florian C. Stintzing
Comprehensive Reviews in Food Science and Food Safety. 2013; 12(1): 40
[Pubmed] | [DOI]
6 HPTLC method development and validation of secondary metabolite-thymol from sufof-e-mohazzil: A unani formulation
Patil, A.G. and Ansari, A.Y. and Koli, S.P. and Patil, D.A.
Asian Journal of Chemistry. 2013; 25(7): 3827-3830
[Pubmed]
7 Stability of essential oils: A review
Turek, C. and Stintzing, F.C.
Comprehensive Reviews in Food Science and Food Safety. 2013; 12(1): 40-53
[Pubmed]
8 Influence of the drying process on the quality of thyme essential oil [InfluĂȘncia do processo de secagem sobre os principais componentes quĂ­micos do Ăłleo essencial de tomilho]
da Rocha, R.P. and Melo, E.D.C. and Barbosa, L.C.D.A. and CorbĂ­n, J.B. and Berbet, P.A.
Revista Ceres. 2012; 59(5): 731-737
[Pubmed]
9 The effects of plant age and harvesting time on chicoric and caftaric acids content of E. purpurea (L.) Moench
Shekarchi, M. and Hajimehdipoor, H. and Khanavid, M. and Roostaied, A.
Iranian Journal of Pharmaceutical Sciences. 2012; 8(3): 203-208
[Pubmed]
10 Development of a validated HPLC method for the simultaneous determination of flavonoids in Cuscuta chinensis Lam. by ultra-violet detection
Hajimehdipoor, H. and Kondori, B.M. and Amin, G.R. and Adib, N. and Rastegar, H. and Shekarchi, M.
DARU, Journal of Pharmaceutical Sciences. 2012; 20(1)
[Pubmed]
11 Development of a validated liquid chromatography method for the simultaneous determination of water soluble vitamins in food supplements and pharmaceutical dosage forms with ultra-violet detection
Khosrokhavar, R. and Sabzevari, O. and Adib, N. and Hossein, R. and Shekarchi, M.
Biosciences Biotechnology Research Asia. 2012; 9(1): 165-171
[Pubmed]
12 Composition of the essential oils of Thymus deanensis celak var. deanensis from different regions of Iran
Abousaber, M. and Khanavi, M. and Khoshchehreh, M. and Hadjiakhoondi, A. and Shams Ardekani, M.R. and Shafiee, A.
Journal of Medicinal Plants. 2012; 11(41): 34-39
[Pubmed]
13 Comparative study of rosmarinic acid content in some plants of Labiatae family
Shekarchi, M. and Hajimehdipoor, H. and Saeidnia, S. and Gohari, A.R. and Hamedani, M.P.
Pharmacognosy Magazine. 2012; 8(29): 37-41
[Pubmed]
14 Analgesic and antiinflammatory activities of the aqueous extract from Plectranthus amboinicus (Lour.) Spreng. both in vitro and in vivo
Chiu, Y.-J. and Huang, T.-H. and Chiu, C.-S. and Lu, T.-C. and Chen, Y.-W. and Peng, W.-H. and Chen, C.-Y.
Evidence-based Complementary and Alternative Medicine. 2012; 2012(508137)
[Pubmed]
15 Analgesic and Antiinflammatory Activities of the Aqueous Extract from Plectranthus amboinicus (Lour.) Spreng. Both In Vitro and In Vivo
Yung-Jia Chiu,Tai-Hung Huang,Chuan-Sung Chiu,Tsung-Chun Lu,Ya-Wen Chen,Wen-Huang Peng,Chiu-Yuan Chen
Evidence-Based Complementary and Alternative Medicine. 2012; 2012: 1
[Pubmed] | [DOI]
16 Development of a validated HPLC method for the simultaneous determination of flavonoids in Cuscuta chinensis Lam. by ultra-violet detection
Homa Hajimehdipoor,Babak kondori,Gholam Amin,Noushin Adib,Hossein Rastegar,Maryam Shekarchi
DARU Journal of Pharmaceutical Sciences. 2012; 20(1): 57
[Pubmed] | [DOI]
17 Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils from Five Selected Herbs
Mei-Lin TSAI,Chih-Chien LIN,Wei-Chao LIN,Chao-Hsun YANG
Bioscience, Biotechnology, and Biochemistry. 2011; 75(10): 1977
[Pubmed] | [DOI]
18 Influence of saponin plants on the volatile fraction of thyme in herbal teas
Tschiggerl, C., Bucar, F.
Fitoterapia. 2011; 82(6): 903-910
[Pubmed]
19 Variation in antibacterial activity, thymol and carvacrol contents of wild populations of Thymus daenensis subsp. daenensis Celak
Ghasemi Pirbalouti, A., Rahimmalek, M., Malekpoor, F., Karimi, A.
Plant OMICS. 2011; 4(4): 209-214
[Pubmed]
20 A validated HPTLC-densitometric method for assay of Aucubin in Vitex agnus-castus L
Hajimehdipoor, H. and Shekarchi, M. and Hamedani, M.P. and Abedi, Z. and Zahedi, H. and Gohari, A.R.
Iranian Journal of Pharmaceutical Research. 2011; 10(4): 705-710
[Pubmed]
21 Antimicrobial, antioxidant, and anti-inflammatory activities of essential oils from five selected herbs
Tsai, M.-L. and Lin, C.-C. and Lin, W.-C. and Yang, C.-H.
Bioscience, Biotechnology and Biochemistry. 2011; 75(10): 1977-1983
[Pubmed]
22 Variation in antibacterial activity and phenolic content of Hypericum scabrum L. populations
Ghasemi Pirbalouti, A. and Rahnama, G.H. and Malekpoor, F. and Roohi Broujeni, H.
Journal of Medicinal Plants Research. 2011; 5(17): 4119-4125
[Pubmed]
23 The alteration of components in the fermented Hwangryunhaedok-tang and its neuroprotective activity
Yang, H.J. and Weon, J.B. and Lee, B. and Ma, C.J.
Pharmacognosy Magazine. 2011; 7(27): 207-212
[Pubmed]
24 High performance liquid chromatographic determination of ascorbic acid in Brassica oleracea L. var. italica Plenck
Shekarchi, M. and Khalili, F. and Mostofi, Y. and Hajimehdipoor, H.
Biosciences Biotechnology Research Asia. 2011; 8(1): 95-100
[Pubmed]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Introduction
    Materials and Me...
    Results and Disc...
    Conclusion
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed10359    
    Printed472    
    Emailed9    
    PDF Downloaded311    
    Comments [Add]    
    Cited by others 24    

Recommend this journal