Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 


 
ORIGINAL ARTICLE
Year : 2010  |  Volume : 6  |  Issue : 22  |  Page : 74-78 Table of Contents     

Radical scavenging and antioxidant activities of methanolic extracts from Hypericum species growing in Bulgaria


Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, Dunav str. 2, 1000 Sofia, Bulgaria

Date of Submission14-Jan-2010
Date of Decision01-Mar-2010
Date of Web Publication30-Apr-2010

Correspondence Address:
Dimitrina Zheleva-Dimitrova
Faculty of Pharmacy, Medical University of Sofia, Dunav str. 2, 1000 Sofia
Bulgaria
Login to access the Email id

Source of Support: Grant 41/2008 from the Medicinal Science Council (MSC) at the Medicinal University of Sofia, Conflict of Interest: None


DOI: 10.4103/0973-1296.62889

Rights and Permissions
   Abstract 

Thirteen Hypericum species growing in Bulgaria were investigated for free radical-scavenging activity, antioxidant activity, total tannins and total flavonoids contents. Methanolic extracts from the Hypericum species were analyzed for radical scavenging and antioxidant activities using DPPH-, ABTS- free radicals, total antioxidant activity and inhibition of lipid peroxidation by ferric thiocyanate (FTC) method. Butylated hydroxytoluene and ascorbic acid were used as positive controls. Methanolic extracts from H. cerastoides, H. perforatum and H. maculatum demonstrate the highest antioxidant activities and are potential sources of natural antioxidant compounds. The quantification of tannins and flavanoids were determined in Hypericum species using Folin-Chiocalteu reagent and AlCl3, respectively. The amounts of the tannins ranged from 1.30 ± 0.01 mg/100 g dw in H. elegans to 8.67 ± 0.02 g/100 g dw in H. perforatum. The highest concentration of flavonoids was found in H. cerastoides (1.22 ± 0.02 g/100g dw), and the lowest amount was established in H. olympicum (0.20 ± 0.03 g/100g dw).

Keywords: Antioxidant activity, flavonoids, Hypericum, radical scavenging, tannins


How to cite this article:
Zheleva-Dimitrova D, Nedialkov P, Kitanov G. Radical scavenging and antioxidant activities of methanolic extracts from Hypericum species growing in Bulgaria. Phcog Mag 2010;6:74-8

How to cite this URL:
Zheleva-Dimitrova D, Nedialkov P, Kitanov G. Radical scavenging and antioxidant activities of methanolic extracts from Hypericum species growing in Bulgaria. Phcog Mag [serial online] 2010 [cited 2018 Dec 11];6:74-8. Available from: http://www.phcog.com/text.asp?2010/6/22/74/62889


   Introduction Top


Free radical production and lipid peroxidation are involved in the pathogenesis of some chronic diseases, including atherosclerosis, cardiac and cerebral ischemia, neurodegenerative disorders, carcinogenesis, diabetes, and rheumatic disorders. [1],[2],[3],[4] In recent years, there has been an increased interest in phenolic compounds derived for their possible health benefits. The anticarcinogenic, antimutagenic, and cardioprotective effects of phenolic compounds are reported to be generally associated with their antioxidant properties of eliminating free radicals and alleviating lipid peroxidation. [5]

The genus Hypericum L. is a large group of herbs or shrubs consisting of approximately 450 species in 36 sections. [6] Hypericum species have been known for their antidepressant, analgesic, spasmolytic, antiviral and wound healing effects for many years. [7],[8] Phytochemical investigations have shown the presence of naphthodianthrones hypericin and pseudohypericin, [9] tannins, flavonoids, xanthones, benzophenones. [10],[11],[12] Numerous substances have been suggested to act as antioxidants. Various phenolic antioxidants such as flavonoids, tannins, coumarins and more recently procyanidins have been shown to scavenge radicals in a dose dependent manner and therefore are viewed as promising therapeutic drugs for free radical pathologies. [13] Flavonoids and tannins are the major plant compounds with antioxidant activity. [14] The aim of the current study is to evaluate the antioxidant property of methanolic extracts from Hypericum species, including scavenging activities against DPPH and ABTS radicals, total antioxidant activity and inhibition of lipid peroxidation. Moreover, the total flavonoids and tannins were quantified.


   Materials and Methods Top


Chemicals and reagents

1,1-Diphenyl-2-picrylhydrazyl (DPPH), Folin-Chiocalteu reagent and linoleic acid were purchased from Sigma, USA. Ferrous chloride, 2,2'-azinobis-(3- ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2, 4, 6-tri(2-pyridyl)-s-triazine (TPTZ), butylated hydroxytoluene (BHT) and ascorbic acid were purchased from Fluka, Germany. Potassium persulfate and Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid) were from Sigma-Aldrich USA. All the other chemicals used including the solvents were of analytical grade.

Plant material and extraction

Aerial parts of Hypericum species used for this study were collected during the flowering season from wild habitats. Voucher specimens from all plants samples were deposited in the Herbarium of the Institute of Botany-Bulgarian Academy of Sciences (SOM) [Table 1].

Air-dried aerial parts were sequentially extracted with CH2Cl2 and then with MeOH. The MeOH extracts (0.01 mg dw/ml) were assayed to determine antioxidant activities.

Quantification of tannins

The quantification of tannins in the aerial parts was performed according to the European Pharmacopoeia [15] involving Folin-Chiocalteu reagent and pyrogallol as standard. The analyses were carried out at 760 nm. All determinations were performed in triplicate (n = 3).

Quantification of flavonoids

The content of the flavonoids in the aerial parts was established spectrophotometrically at 430 nm by creating a complex with AlCl 3 according to the European Pharmacopoeia. [16] The content of flavonoids was calculated as hyperoside. The measurements were carried out using a Shimadzu UV-1203 spectrophotometer (Japan). All determinations were performed in triplicate (n = 3).

Determination of antioxidant activity

DPPH radical-scavenging activity

Scavenging activity of Hypericum extracts against DPPH radical was assessed according to the method of Blois [17] with some modifications. Briefly, 1 ml of Hypericum extracts (0.01 mg dw/ml) was mixed with 4 ml of 0.005 mg/ml DPPH methanol solution. The reaction mixture was vortexed thoroughly and left in the dark at room temperature for 30 min. The absorbance of the mixture was measured at 517 nm. Ascorbic acid and BHT were used as references. The ability to scavenge DPPH radical was calculated by the following equation: DPPH radical scavenging activity , where Abscontrol is the absorbance of DPPH radical in methanol; Abssample is the absorbance of DPPH radical solution mixed with sample extract /standard. All determinations were performed in triplicate (n = 3).

ABTS radical scavenging assay

For ABTS assay, the procedure followed the method of Arnao et al. [18] with some modifications. The stock solutions included 7 mM ABTS solution and 2.4 mM potassium persulfate solution. The working solution was then prepared by mixing the two stock solutions in equal quantities and allowing them to react for 14 h at room temperature in the dark. The solution was then diluted by mixing 1 ml ABTS solution with 60 ml methanol to obtain an absorbance of 0.706 ± 0.01 units at 734 nm using a spectrophotometer. Fresh ABTS solution was prepared for each assay. Plant extracts (1 ml) were allowed to react with 1 ml of the ABTS solution and the absorbance was taken at 734 nm after 7 min using a spectrophotometer. The ABTS scavenging capacity of the extract was compared with that of BHT and ascorbic acid and percentage inhibition calculated as ABTS radical scavenging activity where Abs control is the absorbance of ABTS radical in methanol; Abs sample is the absorbance of ABTS radical solution mixed with sample extract/standard. All determinations were performed in triplicate (n = 3).

Total antioxidant activity (ferric reducing antioxidant power, FRAP)

The FRAP assay was done according to the method of Benzie and Strain [19] with some modifications. The stock solutions included 300 mM acetate buffer (3.1 g C2H3NaO2 x 3H2O and 16ml C 2H4O 2 ), pH 3.6, 10 mM TPTZ (2, 4, 6-tripyridyl-s-triazine) solution in 40 mM HCl, and 20 mM FeCl 3 x 6H2O solution. The fresh working solution was prepared by mixing 25 ml acetate buffer, 2.5 ml TPTZ solution, and 2.5 ml FeCl 3 x 6H2O solution and then warmed at 37°C before using. Hypericum extracts (0.15 ml) were allowed to react with 2.80 ml of the FRAP solution for 30 min in the dark condition. Readings of the colored product (ferrous tripyridyltriazine complex) were then taken at 593 nm. The standard curve was linear between 0.015 and 0.15 mM Trolox. Results are expressed in mM TE/g dry mass. Additional dilution was needed if the FRAP value measured was over the linear range of the standard curve. All determinations were performed in triplicate (n = 3).

Determination of antioxidant activity in linoleic acid system by the FTC method

The antioxidant activity of Hypericum extracts against lipid peroxidation was measured through ammonium thiocyanate assay, as described by Takao et al., [20] with some modifications. The reaction solution, containing 0.2 ml of 0.01 mg/ml Hypericum extract, 0.2 ml of linoleic acid emulsion (25 mg/ml in 99% ethanol) and 0.4 ml of 50 mM phosphate buffer (pH 7.4), was incubated in the dark at 40 °C. A 0.1 ml aliquot of the reaction solution was then added to 3 ml of 70% (v/v) ethanol and 0.1 ml of 30% (w/v) ammonium thiocyanate. Precisely 3 min after the addition of 0.1 ml of 20 mM ferrous chloride in 3.5% (v/v) hydrochloric acid to the reaction mixture, the absorbance of the resulting red color was measured at 500 nm. Aliquots were assayed every 24 h until the day after the absorbance of the control solution (without Hypericum extract) reached maximum value. Butylated hydroxytoluene (BHT) was used as positive control. All determinations were performed in triplicate (n = 3).


   Results and Discussions Top


Tannins and flavonoids content

The amount of tannins, measured by Folin-Ciocalteu method, was expressed as pyrogallol equivalent (PE) and ranged from 1.30 to 8.67 g/100 g dry weight (dw) [Table 2]. The total flavonoids content in the extracts was expressed as g hyperoside equivalent (HE) and varied from 0.20 to 1.22 g/100 g dw. The highest level of tannins was found in H. perforatum (8.67 ± 0.02 g PE/100 g dw), followed by H. maculatum 7.06 ± 0.01 g PE/100 g dw). H. elegans has the lowest content of tannins (1.30 ± 0.01 g PE/100 g dw) and significantly low level of flavonoids (0.43 ± 0.03 g HE/100 g dw). H. cerastoides demonstrated the highest amount of flavonoids (1.22 ± 0.02 g HE/100 g dw) and moderate quantity of tannins (5.75 ± 0.01 g PE/100 g dw). Other species with high content of flavonoids were H. tetrapterum (1.13 ± 0.02 g HE/100 g dw) and H. perforatum (1.12 ± 0.01 g QE/100 g dw). The least quantity of flavanoids was found in H. olympicum (0.20 ± 0.03 g QE/100 g dw).

DPPH, ABTS radical-scavenging and total antioxidant activity

The radical scavenging activity of Hypericum extracts (0.01 mg dw/ml) was compared with those of BHT and ascorbic acid at the same concentration and expressed as % of inhibition against DPPH and ABTS, respectively [Table 3]. H. cerastoides significantly quenched DPPH and ABTS (84.2% ± 0.3 and 90.2% ± 0.1), although it demonstrated a low total antioxidant activity (19.5 ± 0.8 μM TE/ g dw). These results well correlate with the high concentration of flavonoids and moderate level of tannins in the species. The scavenging ability of H. perforatum has significant values (77.6% ± 0.5 for DPPH and 81.2% ± 0.4 for ABTS) and corresponds to the presence of high quantity of phenolic compounds. H. maculatum and H. olympicum demonstrated significantly strong total antioxidant activity (101.8 ± 1 and 89.9 ± 0.2 μM TE/ g dw, respectively) compared to ascorbic acid and BHT. Although, H. olympicum has low content of tannins and flavonoids, the species showed high total antioxidant activity probably due to the presence of other compounds. This fact unambiguous proves that antioxidant potential is affected by many factors.

Antioxidant activity in linoleic acid system

In the present study, the antioxidant activity of Hypericum extracts was determined by peroxidation of linoleic acid using the ferric thiocyanate method (FTC) [Figure 1]. During linoleic acid peroxidation, peroxides were formed and these compounds oxidized Fe 2+ to Fe 3+ . The Fe 3+ ion formed a complex with SCN - , which had a maximum absorbance at 500 nm. [19] Thus, a high absorbance value was an indication of high peroxide formation during the emulsion incubation. As shown in [Figure 1], the absorbance of the control at 500 nm increased to a maximal value of 2 after 96 h, while H. barbatum was the only Hypericum sample, the absorption of which increased to 2. The highest significant diminution was demonstrated by H. cerastoides (0.7) followed by H. richeri (0.75) and H. elegans (0.78). However, the antioxidant activity of these Hypericum species was slightly less effective than that of BHT, a widely used commercial antioxidant. These results indicate that polar extracts from Hypericum species can significantly inhibit the peroxidation of linoleic acid and reduce the formation of hydroperoxide, thus implying that these plants are powerful natural antioxidants.


   Conclusion Top


The obtained results revealed that all tested Hypericum species exhibited radical scavenging. Furthermore, antioxidant activities of methanolic extracts from H. cerastoides, H. perforatum and H. maculatum were found to be the most potent. These species could be evaluated as rich sources of antioxidants.


   Acknowledgements Top


This work was supported by grant 41/2008 from the Medicinal Science Council (MSC) at the Medicinal University of Sofia.

 
   References Top

1.Halliwell B, Gutteridge JM, Cross CE. Free radicals, antioxidants and human disease: Where are we now? J Lab Clin Med 1992;119:598-620.  Back to cited text no. 1      
2.Lefer DJ, Granger DN. Oxidative stress and cardiac disease. Am J Med 2000;109:315-23.  Back to cited text no. 2      
3.Viana M, Aruoma OI, Herrera E, Bonet B. Oxidative damage in pregnant diabetic rats and their embryo. Free Radic Biol Med 2000;29:1115-21.  Back to cited text no. 3      
4.Hδnninen, Kaartinen K, Rauma AL, Nenonen M, Tφrrφnen R, Hδkkinen AS, et al. Antioxidants in vegan diet and rheumatic disorders. Toxicology 2000;155:45-53.  Back to cited text no. 4      
5.Potter JD. Vegetables, fruit, and cancer. Lancet 2005;366:527-30.  Back to cited text no. 5      
6.Robson NK. Studies in the genus Hypericum L. (Guttiferae) 4 (1). Sections 7. Roscyna to 9. Hypericum sensu lato (part 1). Bull Nat Hist Mus London Bot 2001;31:37-88.  Back to cited text no. 6      
7.Pasqua G, Avato P, Monacelli B, Santamaria AR, Argentieri MP. Metabolites in cell suspension cultures, calli, and in vitro regenerated organs of Hypericum perforatum cv. Topas Plant Sci 2003; 165 :977-82.  Back to cited text no. 7      
8.Wojcik A, Podstolski A. Leaf explant response in vitro culture of St. John's wort (Hypericum perforatum L.). Acta Physiol Plant 2007;29:151-6.  Back to cited text no. 8      
9.Kitanov GM. Hypericin and pseudohypericin in some Hypericum species. Biochem Syst Ecol 2001;29:171-8.  Back to cited text no. 9      
10.Kitanov GM, Blinova KF. Modern state of the chemical study of species of the genus Hypericum. Khim Prirod Soedin 1987;23:185-203.  Back to cited text no. 10      
11.Kitanov GM, Nedialkov PT. Mangiferin and isomangiferin in some Hypericum species. Biochem Syst Ecol 1998;26:647-53.  Back to cited text no. 11      
12.Kitanov GM, Nedialkov PT. Benzophenone O-glucoside, a biogenic precursor of 1,3,7-trioxygenated xanthones in Hypericum annulatum. Phytochemistry 2001;57:1237-43.  Back to cited text no. 12      
13.Czinner E, Hagymαsi K, Blαzovics A, Kιry A, Szoke E, Lemberkovics E. The in vitro effect of Helichrysi flos on microsomal lipid peroxidation. J Ethnopharmacol 2001;77:31-5.  Back to cited text no. 13      
14.Franke AA, Cooney RV, Custer LJ, Mordan LJ, Tanaka Y. Inhibition of neoplastic transformation and bioavailability of dietary flavonoid agents. Adv Exp Med Biol 1998;439:237-48.  Back to cited text no. 14      
15.Determination of tannins in herbal drugs. 2.8.14. 5 th ed. European Pharmacopoeia. Council of Europe (COE) - European Directorate for the Quality of Medicines (EDQM). Strasbourg: Council of Europe; 2005. p. 221.  Back to cited text no. 15      
16.Birch leaf (Betulae folium). 5 th ed. European Pharmacopoeia. Council of Europe (COE) - European Directorate for the Quality of Medicines (EDQM). Strasbourg: Council of Europe; 2005. p. 1103.  Back to cited text no. 16      
17.Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958;181:1199-200.   Back to cited text no. 17      
18.Arnao MB, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem 2001;73:239-44.  Back to cited text no. 18      
19.Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of ''antioxidant power'': The FRAP assay. Anal Biochem 1996;239:70-6.  Back to cited text no. 19      
20.Takao T, Kitatani F, Watanabe N, Yagi A, Sakata K. A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci Biotech Biochem 1994;58:1780-3.  Back to cited text no. 20      


    Figures

  [Figure 1]
 
 
    Tables

  [Table 1], [Table 2], [Table 3]


This article has been cited by
1 Modifications of Atlantic salmon by-product oil for obtaining different ?-3 polyunsaturated fatty acids concentrates: An approach to comparative analysis
Monjurul Haq,Seul-Ki Park,Min-Jung Kim,Yeon-Jin Cho,Byung-Soo Chun
Journal of Food and Drug Analysis. 2017;
[Pubmed] | [DOI]
2 Phytochemical analysis, antimicrobial and antioxidant activities of Euphorbia golondrina L.C. Wheeler (Euphorbiaceae Juss.): an unexplored medicinal herb reported from Cameroon
Lawrence Monah Ndam,Afui Mathias Mih,Aaron Suh Tening,Augustina Genla Nwana Fongod,Nkegua Anna Temenu,Yoshiharu Fujii
SpringerPlus. 2016; 5(1)
[Pubmed] | [DOI]
3 Carbon and silver nanoparticles in the fight against the filariasis vector Culex quinquefasciatus: genotoxicity and impact on behavioral traits of non-target aquatic organisms
Kadarkarai Murugan,Devaraj Nataraj,Pari Madhiyazhagan,Vasu Sujitha,Balamurugan Chandramohan,Chellasamy Panneerselvam,Devakumar Dinesh,Ramachandran Chandirasekar,Kalimuthu Kovendan,Udaiyan Suresh,Jayapal Subramaniam,Manickam Paulpandi,Chithravel Vadivalagan,Rajapandian Rajaganesh,Hui Wei,Ban Syuhei,Al Thabiani Aziz,Mohamad Saleh Alsalhi,Sandhanasamy Devanesan,Marcello Nicoletti,Angelo Canale,Giovanni Benelli
Parasitology Research. 2016; 115(3): 1071
[Pubmed] | [DOI]
4 Phenolic content, antimicrobial and antioxidant activities of Hypericum perfoliatum L.
Donato Del Monte,Laura De Martino,Aurelio Marandino,Florinda Fratianni,Filomena Nazzaro,Vincenzo De Feo
Industrial Crops and Products. 2015; 74: 342
[Pubmed] | [DOI]
5 Isolation, identification and antioxidant activity of bound phenolic compounds present in rice bran
Wei Wang,Jia Guo,Junnan Zhang,Jie Peng,Tianxing Liu,Zhihong Xin
Food Chemistry. 2014;
[Pubmed] | [DOI]
6 Production of Antioxidant Egg White Hydrolysates in a Continuous Stirred Tank Enzyme Reactor Coupled with Membrane Separation Unit
Sonja Jakovetic,Nevena Lukovic,Branimir Jugovic,Milica Gvozdenovic,Sanja Grbavcic,Jelena Jovanovic,Zorica Kneževic-Jugovic
Food and Bioprocess Technology. 2014;
[Pubmed] | [DOI]
7 Quality characteristics of lecithin isolated from deoiled mackerel (Scomber japonicus) muscle using different methods
A.K.M. Asaduzzaman,Byung-Soo Chun
Journal of Industrial and Engineering Chemistry. 2014;
[Pubmed] | [DOI]
8 Synthesis and antioxidant activity of some 1-aryl/aralkyl piperazine derivatives with xanthine moiety at N4
Lily Andonova,Dimitrina Zheleva-Dimitrova,Maya Georgieva,Alexander Zlatkov
Biotechnology & Biotechnological Equipment. 2014; : 1
[Pubmed] | [DOI]
9 Hydrolyzates produced from mackerel Scomber japonicus skin by the pressurized hydrothermal process contain amino acids with antioxidant activities and functionalities
A. K. M. Asaduzzaman,Byung-Soo Chun
Fisheries Science. 2014;
[Pubmed] | [DOI]
10 ABTS·+ Scavenging Potency of Selected Flavonols from Hypericum perforatum L. by HPLC-ESI/MS QQQ: Reaction Observation, Adduct Characterization and Scavenging Activity Determination
Yan-Ru Liu,Wei-Guang Li,Li-Fang Chen,Bing-Kun Xiao,Jian-Yun Yang,Liu Yang,Cheng-Gang Zhang,Rong-Qing Huang,Jun-Xing Dong
Food Research International. 2014;
[Pubmed] | [DOI]
11 Recovery of functional materials with thermally stable antioxidative properties in squid muscle hydrolyzates by subcritical water
A. K. M. Asaduzzaman,Byung-Soo Chun
Journal of Food Science and Technology. 2013;
[Pubmed] | [DOI]
12 Estimation of an antioxidant activity of new peptide esters of galanthamine by applying ferric-reducing antioxidant power (FRAP) method
Tsvetkova, D. and Zheleva-Dimitrova, D. and Obreshkova, D.
Comptes Rendus de LæAcademie Bulgare des Sciences. 2013; 66(3): 445-450
[Pubmed]
13 Stability of Antioxidant Properties and Essential Amino Acids in Squid Viscera Hydrolysate Produced using Subcritical Water
Ryoung-Hee Kim,A.K.M. Asaduzzaman,Chi-Hong You,Byung-Soo Chun
Fisheries and aquatic sciences. 2013; 16(2): 71
[Pubmed] | [DOI]
14 Variation in concentrations of major bioactive compounds in Hypericum perforatum L. from Lithuania
Edita Bagdonaite,Pavol Mártonfi,Miroslav Repcák,Juozas Labokas
Industrial Crops and Products. 2012; 35(1): 302
[Pubmed] | [DOI]
15 Antioxidant activity of Hypericum perforatum L. extract in enriched n-3 PUFA pork meat systems during chilled storage
Francisco J. Sánchez-Muniz,Raul Olivero-David,Mehdi Triki,Lorena Salcedo,María José González-Muñoz,Susana Cofrades,Claudia Ruiz-Capillas,Francisco Jiménez-Colmenero,Juana Benedi
Food Research International. 2012; 48(2): 909
[Pubmed] | [DOI]
16 Variation in concentrations of major bioactive compounds in Hypericum perforatum L. from Lithuania
Bagdonaite, E., Mártonfi, P., Repčák, M., Labokas, J.
Industrial Crops and Products. 2012; 35(1): 302-308
[Pubmed]
17 Antioxidant activity of tribulus terrestris - a natural product in infertility therapy
Zheleva-Dimitrova, D. and Obreshkova, D. and Nedialkov, P.
International Journal of Pharmacy and Pharmaceutical Sciences. 2012; 4(4): 508-511
[Pubmed]
18 Antioxidant activity of Hypericum perforatum L. extract in enriched n-3 PUFA pork meat systems during chilled storage
Sánchez-Muniz, F.J. and Olivero-David, R. and Triki, M. and Salcedo, L. and González-Muñoz, M.J. and Cofrades, S. and Ruiz-Capillas, C. and Jiménez-Colmenero, F. and Benedi, J.
Food Research International. 2012; 48(2): 909-915
[Pubmed]
19 Benzophenones and flavonoids from Hypericum maculatum and their antioxidant activities
Zheleva-Dimitrova, D. and Nedialkov, P. and Girreser, U. and Kitanov, G.
Natural Product Research. 2012; 26(17): 1576-1583
[Pubmed]
20 Effect of hydroalcoholic extract of Hypericum perforatum L. Leaves on ethylene Glycol-lnduced kidney calculi in rats
Khalili, M. and Jalali, M.R. and Mirzaei-Azandaryani, M.
Urology Journal. 2012; 9(2): 472-479
[Pubmed]
21 2012-Another successful new year for Pharmacogn Mag.
Mueen Ahmed, K.K.
Pharmacognosy Magazine. 2012; 8(29): 1-3
[Pubmed]
22 Benzophenones and flavonoids fromHypericum maculatumand their antioxidant activities
Dimitrina Zheleva-Dimitrova,Paraskev Nedialkov,Ulrich Girreser,Gerassim Kitanov
Natural Product Research. 2012; 26(17): 1576
[Pubmed] | [DOI]
23 Phytochemical screening, antioxidant, and antimicrobial activities of the crude leaves′ extract from Ipomoea batatas (L.) Lam
Pochapski, M.T. and Fosquiera, E.C. and Esmerino, L.A. and Dos Santos, E.B. and Farago, P.V. and Santos, F.A. and Groppo, F.C.
Pharmacognosy Magazine. 2011; 7(26): 165-170
[Pubmed]
24 Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures
Wan, C., Yu, Y., Zhou, S., Liu, W., Tian, S., Cao, S.
Pharmacognosy Magazine. 2011; 7(25): 40-45
[Pubmed]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Introduction
    Materials and Me...
    Results and Disc...
    Conclusion
    Acknowledgements
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed5739    
    Printed253    
    Emailed4    
    PDF Downloaded414    
    Comments [Add]    
    Cited by others 24    

Recommend this journal