Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 


 
ORIGINAL ARTICLE
Year : 2010  |  Volume : 6  |  Issue : 21  |  Page : 26-33 Table of Contents     

Licorice infusion: Chemical profile and effects on the activation and the cell cycle progression of human lymphocytes


1 Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
2 Institute of Clinical Immunology and Allergology, Charles University, Faculty of Medicine and University Hospital, Sokolská 581, 500 05 Hradec Králové, Czech Republic
3 Mendel University in Brno, Faculty of Horticulture, Valtická 337, 69144 Lednice, Czech Republic

Date of Submission10-Nov-2009
Date of Decision08-Dec-2009
Date of Web Publication13-Feb-2010

Correspondence Address:
Jose Cheel
Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic

Login to access the Email id

Source of Support: Czech Republic government (project MSM 0021620822)/UNESCO,, Conflict of Interest: None


DOI: 10.4103/0973-1296.59963

Rights and Permissions
   Abstract 

A licorice infusion (LI) and its major constituents were investigated for their capacity to stimulate the activation and the cell cycle progression of human lymphocytes, measured by the CD69 expression and DNA content, respectively. The chemical profile of LI was determined by high-performance liquid chromatography-diode array detection (HPLC-DAD). Results: Two major components of LI were identified as liquiritin (1) and glycyrrhizin (2); total flavones and flavonols were shown as its minor constituents. The LI (100-800 µg/ml) stimulated the expression of CD69 on lymphocytes in a concentration-independent manner. Values of the activation index (AI) of total lymphocytes treated with LI (100-800 µg/ml) did not differ significantly among them ( P < 0.05), but were 50% lower than the AI value exhibited by cells treated with phytohemagglutinin (PHA). The LI showed a similar effect on T cells, but on a lower scale. Compounds 1 and 2 (12-100 µg/ml) did not stimulate the CD69 expression on lymphocytes. The LI, 1 and 2 showed no meaningful effect on cell cycle progression of lymphocytes. The experimental data indicates that LI stimulates the activation of lymphocytes as a result of a proliferation-independent process. This finding suggests that LI could be considered as a potential specific immune stimulator.

Keywords: CD69 expression, flavonoids, HPLC, licorice, lymphocytes, phenolics


How to cite this article:
Cheel J, Onofre G, Vokurkova D, Tumova L, Neugebauerova J. Licorice infusion: Chemical profile and effects on the activation and the cell cycle progression of human lymphocytes. Phcog Mag 2010;6:26-33

How to cite this URL:
Cheel J, Onofre G, Vokurkova D, Tumova L, Neugebauerova J. Licorice infusion: Chemical profile and effects on the activation and the cell cycle progression of human lymphocytes. Phcog Mag [serial online] 2010 [cited 2019 Nov 14];6:26-33. Available from: http://www.phcog.com/text.asp?2010/6/21/26/59963


   Introduction Top


Licorice, the dry roots of Glycyrrhiza glabra L. (Fabaceae), is considered one of the oldest and most widely used herbal drugs around the world, being present in most pharmacopoeias of Eastern and Western countries. [1] It has been traditionally used for respiratory, gastrointestinal, cardiovascular, genitourinary, eye, and skin disorders, and for its antiviral effects. [2] Glycyrrhizin and flavonoids such as liquiritin, isoliquiritin, and their aglycones have been reported as the major constituents of licorice and they are perceived as the active principles responsible for its pharmacological efficacy. [3]

The danger to global public health because of viral pandemic diseases such as those induced by influenza and HIV viruses requires the urgent evaluation of herbal drugs in widespread traditional use. Given that traditional sources mention licorice to treat symptoms attributable to viral infections, it is gaining attention as a potential immunomodulating agent. [4] The immunological action of herbs may involve the activation and induction of the cell cycle progression of immune cells, which play important roles in the generation of immune responses. [5] Licorice is consumed customarily in the form of teas and infusions, [6] but the immunomodulating properties of these aqueous preparations and the relation of such effect with its major constituents have been little explored.

The aim of the present study was to investigate the capacity of a licorice infusion (LI) and its major constituents to stimulate the activation and the cell cycle progression of human lymphocytes, using flow cytometry. The chemical profile of LI was determined by HPLC-DAD and spectrophotometric methods.


   Materials and Methods Top


Chemicals

Hide powder, standards (glycyrrhizin and quercetin), propidium iodide, ribonuclease A, phytohemagglutinin (PHA), and Tween-20 were obtained from Sigma Aldrich (Steinheim, Germany). Standard liquiritin was purchased from Wuhan Sunrise Technology Development Co., Ltd. (Hong Kong, China). Folin-Ciocalteu phenol reagent, aluminum chloride hexahydrate, gallic acid, and sodium carbonate were from Merck (Darmstadt, Germany). HPLC grade solvents were from Merck. Ultrapure water from the Milli-Q RG system (Millipore, Molsheim-France) was used. The monoclonal antibodies (phycoerythrin (PE), fluorescein isothiocyanate (FITC), and Allophycocyanin (APC) labeled) were obtained from Immunotech (France) and Dako (Denmark). X-Vivo medium was purchased from Bio-Wittaker (USA).

Sample collection and infusion preparation

Roots of G. glabra were collected in February 2008 from the Botanical Garden of the Faculty of Horticulture, Mendel University in Brno, Czech Republic (situated 164 m above sea level) . The genetic resource was identified with the code 0001. The plant material was dried at 40°C in an oven and was subsequently ground to fine powders (mesh size 20). The infusion was prepared by adding 150 ml of distilled water (95-100ºC) to a precisely weighed amount (1.50 g) of licorice powder. [7] The infusion was brewed for 20 minutes and was then filtered over Whatman No. 1 paper. The resulting aqueous extract was lyophilized and the extraction yield was calculated based on the dry weight of the licorice. The licorice lyophilized infusion (LI) obtained was assessed for its biological activities and chemical profile.

Determination of total content of phenolics

The total phenolic (TP) content was determined using the Folin-Ciocalteu procedure. [8] Briefly, the appropriate extract dilution was oxidized with the Folin-Ciocalteu reagent and the reaction was neutralized with sodium carbonate. The absorbance of the resulting blue color was measured at 760 nm after 30 minutes using a Shimadzu UV-1601 UV/ Vis spectrophotometer. Quantification was plotted on a standard curve of gallic acid. The results were expressed as mg gallic acid equivalents (GAE)/100 mg of LI. Data are reported as means ± standard deviation (SD) to an accuracy of three replicates.

Determination of total content of tannins

After removal of tannins by adsorption on an insoluble matrix (hide powder), the total tannin (TT) content was determined by Folin-Ciocalteu procedure explained briefly in the previous paragraph. Calculated values were subtracted from the total phenolic contents and total tannin contents are expressed as mg gallic acid equivalents (GAE)/100 mg of LI. Data are reported as means ± standard deviation (SD) to an accuracy of three replicates. [9]

Determination of total content of flavones and flavonols

The total flavones and flavonols (TF) content was determined according to the aluminum chloride method. [8] Quercetin was used as a reference for the calibration curve. The absorbance of the reaction mixture was measured at 415 nm. Results were expressed as mg quercetin equivalents (QE)/100 mg of LI. Data are reported as means ± SD to an accuracy of three replicates.

HPLC- diode array detector analysis

The HPLC analysis was performed with a Jasco PU- 2089 pump equipped with a Jasco MD-2015 diode array detector (DAD), and chromatographic separations were performed on a LiChrospher RP-18 column (4.0 x 250 mm i.d., 5 µm). Isocratic elution was used with a mobile phase containing acetonitrile: Methanol: Water: Glacial acetic acid (35:35:29:1, by volume) at a flow rate of 1 ml/min. [10] Separations were carried out at 25ºC with an injection loop of 20 µl. The DAD detector was operated in the range of 200-650 nm, and the analysis was performed at 254 nm. Components of LI were identified by comparing their retention times and UV spectra with those of authentic standards (liquiritin and glycyrrhizin) under identical analysis conditions. Solutions at different concentrations of each standard were injected into the HPLC to check the linearity between concentration and peak areas, and a response factor was calculated. Quantifications of liquiritin and glycyrrhizin were done using these calibration factors.

Activation of immune cells

The activation of total lymphocytes and T cells was analyzed by flow cytometry, measured by CD69 expression. [11] Using sterile 96-well flat-bottomed plates, 100 µl of peripheral blood suspension were incubated along with 100 µl of X-Vivo medium containing test samples with increasing concentrations and without test samples (control). The mitogen PHA was used as a positive control at 10 µg/ml. Samples were filtered through 0.2 µm filters before use. Final concentrations of LI and compounds in the assay media were in the range of 100-800 µg/ml and 12-100 µg/ml, respectively. Plates were then incubated at 37°C with 5% CO 2 for 24 hours. After incubation, 40 µl of each incubated suspension was labeled with a cocktail of fluorescently labeled antibodies CD69 PE, CD69 FITC, CD3 APC. Flow cytometric analysis was performed on a Cytomics FC500 flow cytometer (Beckman Coulter, USA) and data were analyzed by CXP analysis software (Coulter Electronic, USA). Cell activation was measured by increases in mean fluorescence intensities (MFI) because of the expression of CD69 on the cell surface. Fluorescence signals were obtained as logarithmically amplified signals. Values of activation are presented as activation index (AI), which were calculated by dividing the MFI of treated cells with test samples by that of untreated cells (control). A positive immune cell response was defined as an AI ≤ 2. Data were presented as the mean ± SD for three experiments.

Cell cycle progression of lymphocytes

To assess the effect of samples on the cell cycle progression of lymphocytes, the DNA content of individual cells stained with propidium iodide was analyzed by flow cytometry. [5] Briefly, 100 µl of diluted peripheral blood (1:10) was incubated with test samples for 72 hours. Lymphocytes were isolated from red cells by lysis in hypotonic solution followed by centrifugation. Cells were fixed with 4% paraformaldehyde for at least five minutes and the supernatant was removed by centrifugation at 1100 rpm for 10 min. A volume of 500 µl of 0.5% Tween, 50 µl of ribonuclease A, and 50 µl of propidium iodide solution were added and the mixture was incubated for 60 minutes at 37°C with 5% CO 2. Fluorescence (DNA content) was measured on a Cytomics FC500 flow cytometer (Beckman Coulter, USA). A minimum of 10 000 cells analyzed in each sample served to determine the percentages of cells in each phase of the cell cycle; Multicycle AV software was used for the analysis (Phoenix Flow Systems Inc., USA).

Statistical analysis

Data were analyzed by one-way analysis of variance (ANOVA) followed by Tukey's multiple comparison test using the GraphPad Prism 5 software. Differences were considered significant when P < 0.05.


   Results Top


The present study reports the total content of phenolic, flavonoids, and tannins in a licorice infusion [Table 1]. The extraction yield of licorice lyophilized infusion (LI) was about 30%. The data from the HPLC-DAD analysis of LI is presented in [Table 1], whereas, the HPLC chromatogram is presented in [Figure 1]. The two major components of LI were identified as liquiritin 1 and glycyrrhizin 2 [Figure 2] by comparing with the retention times and UV spectra of authentic standards. Peaks 3 and 4 of the chromatogram [Figure 1] showing UV lmax at 248 nm were preliminarily identified as derivatives of glycyrrhetic acid.

The effects of LI, 1, and 2 on the activation of total lymphocytes, measured by the CD69 expression, was analyzed by flow cytometry. As indicated by a shift to the right in histograms [Figure 3]b, [Figure 4]b, the CD69 expression on cells was increased after 24 hours. As the cells were activated, the amount of the fluorescently labeled antibodies bound to them increased. The LI moderately stimulated the expression of CD69 on lymphocytes in a concentration-independent manner in the range of 100-800 µg/ml. Values of the activation index (AI) of total lymphocytes treated with LI in the range of 100-800 µg/ ml did not differ significantly among them (P < 0.05), but were lower than the AI value exhibited by cells treated with PHA [Figure 3]d. The LI showed a similar effect on T cells, but on a lower scale [Figure 4]d. Compounds 1 and 2 in the range of 12-100 µg/ml did not stimulate the CD69 expression on lymphocytes [Figure 3]c, [Figure 4]c. It was observed that the LI, 1, and 2 showed no meaningful effect on cell cycle progression of lymphocytes. Most of the lymphocytes treated with LI, 1, and 2 were in G 1 phase, and there was only a very small number of cells in S or G 2 phases. The PHA stimulated lymphocytes to enter into the S and G 2 phases after 72 hours of culture [Figure 5].


   Discussion Top


Chemical analysis

About 300 kinds of phenolic compounds have been isolated from various species of Glycyrrhiza and many of them are described as exhibiting biological actions that supplement the efficacy of licorice. [3] Polyphenols are bioactive compounds believed to be involved in the defence process against oxidative damage in biological systems, owing at least in part to their antioxidant properties. [12] In a prior study, the content of TP (7.42 µg/mg) and TF (0.88 µg/mg) in a licorice extract were reported. [13] In another study, the TF content of G. pallidiflora was measured by two different methods. The TF contents were 2.09 mg/100 mg and 4.27 mg/100 mg of the extract, measured by the AlCl 3 and Al(NO 3 ) 3 methods, respectively. [14] Most reports on the flavonoid content in licorice are usually based on flavanones and chalcone such as liquiritin, isoliquiritin, and their corresponding aglycones. [3] Unlike flavanones from licorice, other types of minor flavonoids such as flavones and flavonols have been shown to exhibit strong antioxidant effects. [15] To date, there is very limited information on the TT content in the roots of Glycyrrhiza species. Two flavonoids, named licochalcone B and glycyrrhisoflavone, were isolated from an acetonic- aqueous extract of licorice and they exhibited tannin-like activity. [15] Glycyrrhizin has been reported to constitute 10-25% of licorice extract [16] and the liquiritigenin glycosides were reported to constitute 1.6% of licorice aqueous extract. [17] As can be noticed, the comparison between the values reported by different laboratories can be complicated because of substantial differences in sample preparation, geographic sources, harvesting, and expression of results.

Activation of immune cells

The CD69 glycoprotein is a very early cell activation molecule expressed on the surface of T, B, and Natural Killer (NK) cells following activation. [18] It can appear within 1-2 hours of activation and exhibits maximal expression levels between 18 and 24 hours after stimulation. [19] Although a physiological ligand for CD69 has not yet been identified, its wide distribution and the observation that crosslinking of the molecule generates intracellular signals suggest a significant role for CD69 in immune response. [20] Three major types of lymphocytes include T, B, and NK cells. Adaptive immune responses are based on the activities of T lymphocytes (also called T cells) and B lymphocytes (B cells). The key to the adaptive immune system is the presence of the extremely variable antigen-specific receptors of the T lymphocytes (called TCRs) and B lymphocytes (called B-cell receptors [BCRs], immunoglobulins, or antibodies). NK cells are part of the lymphoid lineage but are distinct from T and B lymphocytes because they do not express the specialized receptors associated with the adaptive immune response. Instead they have two other types of receptors that determine their ability to identify and kill targeted host cells: Killer activation receptors and killer inhibition receptors. NK cells are important elements in innate defenses against virally infected and cancerous host cells. [21]

As can be deducted from AI values [Figure 3]d, [Figure 4]d, the activation of total lymphocytes and T cells by LI represents about 50 and 34% of those promoted by PHA, respectively. In addition, by comparing the AI of total lymphocytes with those of T cells, it was observed that about 50% of the activation of total lymphocytes could proceed from the T cells activation. Although the effect of LI on the CD69 expression was moderate, this fact could be hypothetically interpreted as beneficial, given that increased level of CD69 expression on T cells has been associated with some autoimmune diseases. [22],[24] Licorice has multiple constituents and not one active ingredient; therefore, it is possible that they are able to act in a regulatory way, both activating and modulating the immune response. It is also questionable whether the LI immunostimulating effect is long-term because the CD69 expression on the surface of immune cells not only occurs very rapidly, but also declines rapidly (disappearing after two days). Therefore, this study measured the CD25 expression, a later-expressed activation marker, but the expression was very low (data are not shown). Apparently, regular consumption of licorice infusion would be important for its long-term effect.

Recently, tinctures of Echinacea purpurea, Astragalus membranaceus, and G. glabra were shown to stimulate T cells, determined by CD69 expression. These three herbs had an additive effect on CD69 expression when used in combination and no chemical compound was related with the effects observed. [11] In contrast, previous in vitro studies revealed antiviral activity of glycyrrhizin against HIV-1, SARS related coronavirus, respiratory syncytial virus, arboviruses, vaccinia virus, and vesicular stomatitis virus. Mechanisms for antiviral activity included the reduced transport to the membrane and sialylation of viral surface antigen, reduction of membrane fluidity leading to inhibition of fusion of the viral membrane with the cell, induction of interferon gamma in t-cells, inhibition of phosphorylating enzymes in vesicular stomatitis virus infection, and reduction of viral latency. [4]

Licorice is popularly consumed in the form of teas and infusions; [6] however, studies on the immunomodulating effects of licorice by measuring the CD69 expression have been focused mainly on its tincture. [11] Infusion and tincture of licorice have different chemical profiles [23],[25] and therefore are expected to show different bioactivities. In the present study, the effect of a LI on the activation of lymphocytes was investigated for the first time. In contrast to a number of prior investigations, [26] the current study indicates that glycyrrhizin does not seem to be involved in the immunostimulating effect of LI, as measured by the CD69 expression.

Cell cycle progression of lymphocytes

The immunomodulating action of herbs may involve not only cell activation, but also cell proliferation. It is described that the interaction of lymphocytes with antigens or PHA initiates a cascade of biochemical events and gene expression, which induces the resting immune cells to enter the cell cycle, and then begin proliferating and differentiating. [27] By measuring the incorporation of propidium iodide in lymphocyte DNA using flow citometry, it was observed that LI, 1, and 2 had no effect on the cell cycle progression of lymphocytes. It has been suggested in different systems that CD69 expression may precede cell proliferation, maturation or differentiation. [28] Nevertheless, the CD69 expression may not completely overlap with cells that undergo DNA synthesis following antigen receptor engagement. Although the immunologic consequences of lymphocyte clonal expansion are well established and critical to the development of immunity, the relevance of CD69 expression to this process is less understood. [29] The emerging data from the present study suggests that the LI-activated lymphocytes express CD69 as a result of a proliferation-independent process. In the current investigation, the stimulating effect of LI and its two major constituents on the cell cycle progression of lymphocytes was investigated for the first time.


   Conclusion Top


The present in vitro study demonstrates that licorice infusion (LI) stimulates the activation of lymphocytes, mainly T cells. The two major components of LI were identified as liquiritin (1) and glycyrrhizin (2) and they seem not to be involved in the activation of lymphocytes. Flavones and flavonols were identified as minor constituents of LI. This report establishes the need for future studies to determine the in vivo effect of LI on lymphocytes and to identify its active constituentes. This herbal preparation might be a potential alternative for mounting an effective immune response and as a preventive barrier against both viral and bacterial infections, and during immunosenescence.


   Acknowledgments Top


This study was financially supported by the Czech Republic government (project MSM 0021620822)/UNESCO. The authors thank Mrs. Iveta Nesvorná for the English corrections.

 
   References Top

1.Biondi DM, Rocco C, Ruberto G. Dihydrostilbene derivatives from Glycyrrhiza glabra leaves. J Nat Prod 2005;68:1099-102.  Back to cited text no. 1      
2.Fiore C, Eisenhut M, Ragazzi E, Zanchin G, Armanini D. A history of the therapeutic use of liquorice in Europe. J Ethnopharmacol 2005;99:317-24.  Back to cited text no. 2      
3.Zhang Q, Ye M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J Chromatogr A 2009;1216:1954-69.  Back to cited text no. 3      
4.Fiore C, Eisenhut M, Krausse R, Ragazzi E, Pellati D, Armanini D, et al. Antiviral effects of Glycyrrhiza species. Phytother Res 2008;22:141-8.  Back to cited text no. 4      
5.Xu L, Liu Y, He X. Inhibitory effects of berberine on the activation and cell cycle progression of human peripheral lymphocytes. Cell Mol Immunol 2005;2:295-300.  Back to cited text no. 5      
6.Obolentseva GV, Litvinenko VI, Ammosov AS, Popova TP, Sampiev AM. Pharmacological and therapeutic properties of licorice preparations (A review). Pharmaceut Chem J 1999;33:24-31.  Back to cited text no. 6      
7.Czech Pharmacopoeia. 6 th ed. Prague: Grada Publishing; 2009. p. 3533.  Back to cited text no. 7      
8.Cheel J, Theoduloz C, Rodriguez J, Caligari PD, Schmeda- Hirschmann G. Free radical scavenging activity and phenolic content in achenes and thalamus from Fragaria chiloensis ssp. chiloensis, F. vesca and F. x ananassa cv. Chander. Food Chem 2007;102:136-44.  Back to cited text no. 8      
9.Malenèiæ D, Maksimoviæ Z, Popoviæ M, Miladinoviæ J. Polyphenol contents and antioxidant activity of soybean seed extracts. Bioresource Technol 2008;99:6688-91.  Back to cited text no. 9      
10.Sabbioni C, Ferranti A, Bugamelli F, Forti GC, Raggi MA. Simultaneous HPLC analysis, with isocratic elution, of glycyrrhizin and glycyrrhetic acid in liquorice roots and confectionery products. Phytochem Analysis 2006;17:25-31.  Back to cited text no. 10      
11.Brush J, Mendenhall E, Guggenheim A, Chan T, Connelly E, Soumyanath A, et al. The effect of Echinacea purpurea, Astragalus membranaceus and Glycyrrhiza glabra on CD69 expression and immune cell activation in humans. Phytother Res 2006;20:687-95.  Back to cited text no. 11      
12.Parr AJ, Bolwell GP. Phenols in the plant and in man: The potencial for possible nutricional enhancement of the diet by modifying the phenols content or profile. J Sci Food Agr 2000;80:985-1012.  Back to cited text no. 12      
13.Di Mambro VM, Fonseca MJ. Assays of physical stability and antioxidant activity of a topical formulation added with different plant extracts. J Pharmaceut Biomed Anal 2005;37:287-95.  Back to cited text no. 13      
14.Ma JY, Zhang J, Wang YF, Yao J. Extraction and analysis of total flavonoids from roots of cultivated Glycyrrhiza pallidiflora. J Plant Resour Environ 2006;15:78-9.  Back to cited text no. 14      
15.Hatano T, Kagawa H, Yasuhara T, Okuda T. Two new flavonoids and other constituents in licorice root: Their relative astringency and radical scavenging effects. Chem Pharm Bull 1988;36:2090-7.  Back to cited text no. 15      
16.Isbrucker RA, Burdock GA. Risk and safety assessment on the consumption of licorice root (Glycyrrhiza sp.), its extract and powder as a food ingredient, with emphasis on the pharmacology and toxicology of glycyrrhizin. Regul Toxicol Pharmacol 2006;46:167-92.  Back to cited text no. 16      
17.Kitagawa I, Chen WZ, Taniyama T, Harada E, Hori K, Kobayashi M, et al. Quantitative determination of constituents in various licorice roots by means of high performance liquid chromatography. Yakugaku Zasshi 1998;118:519-28.  Back to cited text no. 17      
18.Ziegler SF, Ramsdell F, Alderson MR. The activation antigen CD69. Stem Cells 1994;12:456-65.  Back to cited text no. 18      
19.Borges O, Borchard G, de Sousa A, Junginger HE, Cordeiro-da-Silva A. Induction of lymphocytes activated marker CD69 following exposure to chitosan and alginate biopolymers. Int J Pharm 2007;337:254-64.  Back to cited text no. 19      
20.Atzeni F, Schena M, Ongari AM, Carrabba M, Bonara P, Minonzio F, et al. Induction of CD69 activation molecule on human neutrophils by GM-CSF, IFN-g, and IFN-á. Cell Immunol 2002;220:20-9.  Back to cited text no. 20      
21.Melvold RW, Sticca RP. Basic and tumor immunology: A review. Surg Oncol Clin N Am 2007;16:711-35.  Back to cited text no. 21      
22.Gessl A, Waldhäusl W. Elevated CD69 expression on naive peripheral blood t-cells in hyperthyroid Graves' disease and autoimmune thyroiditis: Discordant effect of methimazole on HLA-DR and CD69. Clin Immunol Immunopathol 1998;87:168-75.  Back to cited text no. 22      
23.Li L, Liang S, Du F, Li C. Simultaneous quantification of multiple licorice flavonoids in rat plasma. J Am Soc Mass Spectrom 2007;18:778-82.  Back to cited text no. 23      
24.Murata K, Inami M, Hasegawa A, Kubo S, Kimura M, Yamashita M, et al. CD69-null mice protected from arthritis induced with anti-type II collagen antibodies. Int Immunol 2003;15:987-92.  Back to cited text no. 24      
25.Shanker K, Fatima A, Negi AS, Gupta VK, Darokar MP, Gupta MM, et al. RP-HPLC method for the quantitation of Glabridin in Yashti-madhu (Glycyrrhiza glabra). Chromatographia 2007;65:771-4.  Back to cited text no. 25      
26.Nassiri Asl M, Hosseinzadeh HM. Review of pharmacological effects of Glycyrrhiza sp. nd its bioactive compounds. Phytother Res 2008;22:709-24.  Back to cited text no. 26      
27.Ajchenbaum F, Ando K, DeCaprio JA, Griffin JD. Independent regulation of human D-type cyclin gene expression during G1 phase in primary human T lymphocytes. J Biol Chem 1993;268:4113-9.   Back to cited text no. 27      
28.Testi R, D'Ambrosio D, De Maria R, Santoni A. The CD69 receptor: A multipurpose cell-surface trigger for hematopoietic cells. Immunol Today 1994;15:479-83.  Back to cited text no. 28      
29.Simms PE, Ellis TM. Utility of flow cytometric detection of CD69 expression as a rapid method for determining poly- and oligoclonal lymphocyte activation. Clin Diagn Lab Immunol 1996;3:301-4.  Back to cited text no. 29      


    Figures

  [Figure 1], [Figure 2], [Figure 3], [Figure 4], [Figure 5]
 
 
    Tables

  [Table 1]


This article has been cited by
1 Hepatoprotective Effects of a Proprietary Glycyrrhizin Product during Alcohol Consumption: A Randomized, Double-Blind, Placebo-Controlled, Crossover Study
Harsha Chigurupati,Biswajit Auddy,M. Biyani,Sidney J. Stohs
Phytotherapy Research. 2016;
[Pubmed] | [DOI]
2 Comparative pharmacokinetics of puerarin, daidzin, baicalin, glycyrrhizic acid, liquiritin, berberine, palmatine and jateorhizine by liquid chromatography–mass spectrometry after oral administration of Gegenqinlian decoction and active components alignment (ACA) to rats
Beilei Xu,Pengyue Li,Guijun Zhang
Journal of Chromatography B. 2015; 988: 33
[Pubmed] | [DOI]
3 Bioactivity and Potential Health Benefits of Licorice
Tzu-Chien Kao,Chi-Hao Wu,Gow-Chin Yen
Journal of Agricultural and Food Chemistry. 2014; 62(3): 542
[Pubmed] | [DOI]
4 2012-Another successful new year for Pharmacogn Mag.
Mueen Ahmed, K.K.
Pharmacognosy Magazine. 2012; 8(29): 1-3
[Pubmed]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Introduction
    Materials and Me...
    Results
    Discussion
    Conclusion
    Acknowledgments
    References
    Article Figures
    Article Tables

 Article Access Statistics
    Viewed5066    
    Printed252    
    Emailed3    
    PDF Downloaded105    
    Comments [Add]    
    Cited by others 4    

Recommend this journal