Home | About PM | Editorial board | Search | Ahead of print | Current Issue | Archives | Instructions | Subscribe | Advertise | Contact us |  Login 
Pharmacognosy Magazine
Search Article 
  
Advanced search 
 


 
ORIGINAL ARTICLE
Year : 2010  |  Volume : 6  |  Issue : 21  |  Page : 1-4 Table of Contents     

Natural products from the termite Nasutitermes corniger lowers aminoglycoside minimum inhibitory concentrations


1 Laboratório de Pesquisa em Produtos Naturais, Departamento de Ciências Biológicas, Universidade Regional do Cariri, Crato (CE), 63105-000, Brazil
2 Universidade Federal do Rio Grande do Norte, Departamento de Botânica, Ecologia e Zoologia, Natal (RN). 59072-900, Brazil
3 Universidade Federal da Paraíba-UFPB, Departamento de Biologia Molecular-DBM, 58051-900, Brazil

Date of Submission13-Aug-2009
Date of Decision02-Dec-2009
Date of Web Publication13-Feb-2010

Correspondence Address:
Henrique D.M Coutinho
Universidade Regional do Cariri URCA; Centro de Ciências Biológicas e da Saúde - CCBS, Departamento de Ciências Biológicas - DCB, Laboratório de Pesquisa em Produtos Naturais LPPN, CEP:63105-900. Crato
Brazil
Login to access the Email id


DOI: 10.4103/0973-1296.59958

PMID: 20548928

Get Permissions

   Abstract 

Bacterial infectious agents present a risk to populations, as they are responsible for high morbidity and mortality. For combating these pathogens, our main line of defense is the use of antibiotics. However, indiscriminate use of these drugs develops resistant strains to these same drugs. The present study has tested the antibacterial and modifying antibiotic activity of natural products from Nasutitermes corniger (Termitidae) (Motschulsky), a termite used in folk medicine in Northeast Brazil, by the microdilution and checkerboard methods, respectively. In this study, the aqueous extract from the nest of N. corniger (ANCE) was prepared and tested with chlorpromazine (CPZ) for its antimicrobial activity, using the microdilution method. CPZ and ANCE were used independently and also in combination with aminoglycosides, against a strain of Escherichia coli resistant to these antibiotics, to determine the participation of efflux systems in resistance mechanisms. The fractional inhibitory concentration (FIC) index was calculated and evaluated for the occurrence of synergism, using the checkerboard method. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) values were ≥ 2048 µg/mL for both strains of E. coli assayed, indicating low antibacterial activity. However, synergism was observed with kanamycin when the decoction was used, but when chlorpromazine was used, synergism was observed with kanamycin, amikacin, and neomycin. This synergism with CPZ indicated the involvement of an efflux system in the resistance to these aminoglycosides. Therefore, it was suggested that the natural products from N. corniger could be used as a source of zoo-derived natural products with kanamycin-modifying activity, resulting in a new approach against bacterial resistance to antibiotics.

Keywords: Aminoglycosides, antibiotic modifying activity, ethnozoology, isopteran, N. Corniger, termite, zootherapy


How to cite this article:
Coutinho HD, Vasconcellos A, Freire-Pessôa HL, Gadelha CA, Gadelha TS, Almeida-Filho GG. Natural products from the termite Nasutitermes corniger lowers aminoglycoside minimum inhibitory concentrations. Phcog Mag 2010;6:1-4

How to cite this URL:
Coutinho HD, Vasconcellos A, Freire-Pessôa HL, Gadelha CA, Gadelha TS, Almeida-Filho GG. Natural products from the termite Nasutitermes corniger lowers aminoglycoside minimum inhibitory concentrations. Phcog Mag [serial online] 2010 [cited 2014 Aug 28];6:1-4. Available from: http://www.phcog.com/text.asp?2010/6/21/1/59958


   Introduction Top


Although plants are more commonly studied around the world for their medicinal potential, animals or animal parts have also been widely used in Brazilian traditional medicine and have played a significant role in healing practices. [1-3] Products from several species of Insecta have been used as remedies. [1],[2],[4],[5],[6] Among these species is the Neotropical termite Nasutitermes corniger (Termitidae) (Motschulsky), which is commonly used in traditional medicine in Northeast Brazil. N. corniger is distributed from southern Mexico to northern Argentina and the West Indies, [7],[8],[9],[10],[11] inhabiting both semi-arid and tropical rainforest ecosystems. In South America, this species is highly adaptable to the colonization of contrasting habitats in urban, agricultural, and natural environments. [12],[13] N. corniger builds arboreal carton nests with a population that can exceed 400,000 individuals/ nest [14] and a density that ranges from 22.1 to 47.1 nest/ha in tropical rainforests. [12],[15] Scheffrahn et al., [11] based on the morphological, genetic, and biogeographic lines of evidence have made N. costalis (Termitidae)(Holmgren) a synonymous with N. corniger. According to Constantino, [10] the congeneric species N. araujoi (Termitidae)(Roonwal and Rathore), N. globiceps (Termitidae)(Holmgren), and N. tatarendae (Termitidae)(Holmgren) can also be synonymous with N. corniger.

With the increase in resistance to antibiotics, natural products represent an interesting alternative. [16],[17] Many products have been evaluated not only for direct antimicrobial activity, but also as resistance-modifying agents. [18],[19] Several chemical compounds from synthetic or natural sources, such as, phenothiazines and natural products, have direct activity against many species of bacteria, enhancing the activity of specific antibiotics, reversing the natural resistance of specific bacteria to several antibiotics, and promoting the elimination of plasmids from bacteria such as  Escherichia More Details coli. Inhibition of plasma membrane-based efflux pumps has been observed as well. [20],[21] The enhancement of antibiotic activity or the reversal of antibiotic resistance by natural or synthetic non-conventional antibiotics results in the classification of these compounds as modifiers of antibiotic activity. Aminoglycosides are potent bactericidal antibiotics targeting the bacterial ribosome, but the increase in bacterial resistance to aminoglycosides is widely recognized as a serious health threat. [20] In E. coli, the main mechanisms of resistance to aminoglycosides are their active efflux and enzymatic inactivation. [21] The present study has evaluated a decoction of N. corniger nests and CPZ as a resistance-modifying agent in a strain of E. coli resistant to aminoglycosides.


   Materials and Methods Top


Strains

The strain used was a clinical isolate of Escherichia coli (EC27), resistant to neomycin and gentamicin (low level) and to amikacin and kanamycin. The Escherichia coli strain EC - ATCC8539 was used as a positive control sensitive to aminoglycosides. All strains were maintained on heart infusion agar slants (HIA, Difco), and prior to assay, the cells were grown overnight at 37ºC in a brain heart infusion (BHI, Difco).

Zoological material

Nasutitermes corniger was collected in the county of Alagoa Nova, Paraíba, Brazil (21°58'N, 89°36'W) during June 2007. The samples were authenticated by Dr. Alexandre Vasconcellos at the Botany, Ecology, and Zoology Department, UFRN. Voucher specimens (CICB 68 and CICB 69) were deposited in the Isoptera Collection of the Bioscience Center, Universidade Federal do Rio Grande do Norte-UFRN.

Preparation of aqueous extract of N. corniger nest (ANCE)

An amount of 200 g of termite nest was collected and powdered. The powdered material was extracted by maceration using 100 mL of sterile water as a solvent, at room temperature. The extract was allowed to stand for 72 h at room temperature. The aqueous extract was filtered and assayed to determine antibacterial activity.

Drugs

Chlorpromazine, gentamicin, kanamycin, amikacin, and neomycin were obtained from SIGMA, St. Louis, USA. All the drugs were dissolved in sterile water.

Drug susceptibility test and determination of fractional inhibitory concentration

The minimum inhibitory concentrations (MICs) of ANCE, antibiotics, and CPZ were determined in BHI by the microdilution method, using suspensions of 10 5 CFU/ mL and a drug concentration range of 1024 to 1 µg/mL (two-fold serial dilutions). [22] MIC was defined as having the lowest concentration at which no growth was observed. For the evaluation of ANCE as a modulator of antibiotic resistance, the MICs of the antibiotics were determined in the presence of ANCE and CPZ at a sub-inhibitory concentration and the FIC was calculated. CPZ being an inhibitor of the efflux pump was used in this study to demonstrate the presence or absence of resistance by this mechanism and to verify if it was affected by ANCE. The fractional inhibitory concentration (FIC) was used to interpret the tube dilution method results and calculated as follows: [23] FIC of drug A = MIC of drug A in combination with ANCE or CPZ/MIC drug A alone. Synergy was defined as an FIC # 0.5, indifference was defined as 4 ≥ FIC > 0.5, and antagonism was defined as an FIC >4. The plates were incubated for 24 h at 378C. CPZ was used as the positive control for efflux pump inhibition.


   Results and Discussion Top


ANCE did not show substantial antibacterial activity at 1024 µg/mL against the strains assayed (MIC for both µ 2048 µg/mL). However, when ANCE was added to the growth medium at 256 µg/mL, a reduction of the MIC for kanamycin was observed in the E. coli 27 strain (but not with ATCC 8539), demonstrating a synergistic effect of this natural product with this aminoglycoside [Table 1].

Synergism between CPZ and gentamicin was not observed, but CPZ did show synergism with the other aminoglycosides, which is suggestive of the occurrence of efflux pumps against the latter. As the same effect was observed by using ANCE or CPZ, it is possible that the decoction affected the efflux resistance mechanism [Table 1].

Evidence of the antimicrobial activity of products isolated from termites has been reported. Peptides such as, spinigerin and termicin, isolated from Pseudocanthotermes spiniger (Termitidae) (Sjostedt), showed antifungal and antibacterial activities. [24],[25] Bioinformatics and molecular biology studies on the Australian termites of the genus Nasutitermes demonstrated their potential as producers of antimicrobial peptides, [26],[27] but as far as we know, there have been no previous reports on the antimicrobial activity of natural products from N. corniger or synergism between products of any genus of termites with aminoglycosides or any other antibiotic.

Phenothiazines, such as CPZ, probably act on the plasma membrane of the bacteria, affecting their efflux pumps. [28],[29],[30] This permeability modification could enhance the activity of antibiotics that act within the cell, such as the aminoglycosides. Efflux pumps as resistance mechanisms of E. coli have been known since the 1980s; [31] they belong to the RND (resistance nodulation division) family and represent a mechanism of multidrug resistance (MDR), having the antibiotic resistance to agents such as aminoglycosides. [32]

Animals have been methodically tested by pharmaceutical companies as sources of drugs for modern medical science [33] and the current percentage of animal sources for producing essential medicines is quite significant. The chemical constituents and pharmacological actions of some animal products are already known to some extent and ethnopharmacological studies focused on animal medicines may be very important in order to clarify the eventual therapeutic usefulness of this class of biological remedies. [34] As pointed by Alves and Rosa, [1] further ethnopharmacological studies are necessary to increase our understanding of the links between traditional uses of faunistic resources and conservation biology, public health policies, sustainable management of natural resources, and biological prospecting.

The results obtained indicate that the decoction of the nest of N. corniger (and possibly of other termites) could be a source of natural products capable of modifying antibiotic activity to be used against multidrug-resistant bacteria. These agents when used as an adjuvant in antibiotic therapy could make it possible to use lower antibiotic doses with an effective outcome, but without the risk of pathogenic microorganisms developing resistance. Thus, new investigations of these agents isolated from animals and plants could lead to interesting tools against multidrug resistance in bacteria.

 
   References Top

1.Alves RR, Rosa IL. From cnidarians to mammals: The use of animals as remedies in fishing communities in NE Brazil. J Ethnopharmacol 2006;107:259-76.  Back to cited text no. 1  [PUBMED]  [FULLTEXT]  
2.Alves RR, Rosa IL, Santana GG. The role of animal-derived remedies as complementary medicine in Brazil. Bioscience 2007;57:1-7.  Back to cited text no. 2      
3.Ferreira FS, Brito SV, Ribeiro SC, Saraiva AA, Almeida WO, Alves RR. Animal-based folk remedies sold in public markets in Crato and Juazeiro do Norte, Ceara, Brazil. BMC Complement Alternat Med 2009;9:17.  Back to cited text no. 3      
4.Alves RR, Rosa IL. Zootherapeutic practices among fishing communities in North and Northeast Brazil: A comparison. J Ethnopharmacol 2007a;111:82-103.  Back to cited text no. 4  [PUBMED]  [FULLTEXT]  
5.Alves RR, Rosa IL. Zootherapy goes to town: The use of animal-based remedies in urban areas of NE and N Brazil. J Ethnopharmacol 2007b;113:541-55.  Back to cited text no. 5  [PUBMED]  [FULLTEXT]  
6.Alves RR. Fauna used in popular medicine in Northeast Brazil. J Ethnobiol Ethnomed 2009;5:1.  Back to cited text no. 6  [PUBMED]  [FULLTEXT]  
7.Holmgren N. Versuch einer Monographie der amerikanishe Eutermes-Arten. Jahr Hamb Wissensch Anstalten 1910;27:171-325.  Back to cited text no. 7      
8.Torales GJ, Armua AC. Contribución al conocimiento de las termitas de Argentina (Provincia de Corrientes). Nasutitermes corniger (Isoptera: Termitidae). Primeira parte. Facena 1986;6:203-22.  Back to cited text no. 8      
9.Nickle DA, Collins MS. The termites of Panama. In: Quintero DA, Aiello A, editors. Insects of Panama and Mesoamerica. New York: Oxford University Press; 1992. p. 208-41.  Back to cited text no. 9      
10.Constantino R. The pest termites of South America: Taxonomy, distribution and status. J Appl Entomol 2002;126:355-65.  Back to cited text no. 10      
11.Scheffrahn RH, Krecek J, Szalanski AL, Austin JW. Synonymy of neotropical arboreal termites Nasutitermes corniger and N. costalis (Isoptera: Termitidae: Nasutitermitinae), with evidence from morphology, genetics, and biogeography. Ann Entomol Soc Am 2005;98:273-81.  Back to cited text no. 11      
12.Martius C. Diversity and ecology of termites in Amazonian forest. Pedobiology 1994;38:407-28.  Back to cited text no. 12      
13.Fontes LR, Milano S. Termites as an urban problem in South America. Sociobiology 2003;4:103-51.  Back to cited text no. 13      
14.Thorne B. Polygyny in termites: Multiple primary queens in colonies of Nasutitermes corniger (Motschulsky) (Isoptera, Termitidae). Insects Sociaux 1982;29:102-17.  Back to cited text no. 14      
15.Vasconcellos A, Bandeira AG, Almeida WO, Moura FM. Termites that build conspicuous nests in two areas of Atlantic forest under different levels of anthropogenic disturbance. Neotrop Entomol 2008;37:15-9.  Back to cited text no. 15  [PUBMED]  [FULLTEXT]  
16.Lu Y, Zhao YP, Wang ZC, Chen SY, Fu CX. Composition and antimicrobial activity of the essential oil of Actinidia macrosperma from China. Nat Prod Res 2007;21:227-33.  Back to cited text no. 16  [PUBMED]  [FULLTEXT]  
17.Coutinho HD, Costa JG, Lima EO, Falcão-Silva VS, Siqueira-Júnior JP. Herbal therapy associated with antibiotic therapy: Potentiation of the antibiotic activity against methicillin-resistant Staphylococcus aureus by Turnera ulmifolia L. BMC Complement Altern Med 2009;9:13.  Back to cited text no. 17      
18.Gibbons S. Anti-staphylococcal plant natural products. Nat Prod Rep 2004;21:263-77.  Back to cited text no. 18  [PUBMED]  [FULLTEXT]  
19.Gurib-Fakim A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol Aspects Med 2006;27:1-93.  Back to cited text no. 19  [PUBMED]  [FULLTEXT]  
20.Jana S, Deb JK. Molecular understanding of aminoglycoside action and resistance. Appl Microbiol Biotechnol 2006;70:140-50.  Back to cited text no. 20  [PUBMED]  [FULLTEXT]  
21.Smith E, Williamson M, Wareham N, Kaatz G, Gibbons S. Antibacterial and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochemistry 2007;68:210-7.  Back to cited text no. 21      
22.NCCLS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard, 6 th ed. NCCLS document M7-A6. Wayne: National Committee for Clinical Laboratory Standards; 2008.  Back to cited text no. 22      
23.Mackay ML, Milne K, Gould IM. Comparison of methods for assessing synergic antibiotic interactions. Int J Antimicrob Agents 2000;15:125-9.  Back to cited text no. 23  [PUBMED]  [FULLTEXT]  
24.Lamberty M, Zachary D, Lanot R, Bordereau C, Robert A, Hoffmann JA, et al. Constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in a termite insect. J Biol Chem 2001;276:4085-92.  Back to cited text no. 24      
25.Coutinho HD, Lôbo KM, Bezerra DA, Lôbo I. Peptides and proteins with antimicrobial activity. Indian J Pharmacol 2008;40:3-9.  Back to cited text no. 25    Medknow Journal  
26.Bulmer MS, Crozier RH. Duplication and diversifying selection among termite antifungal peptides. Mol Biol Evol. 2004;21:2256-64.  Back to cited text no. 26      
27.Bulmer MS, Crozier RH. Variation in positive selection in termite GNBPs and relish. Mol Biol Evol. 2006;23:317-26.  Back to cited text no. 27      
28.Salih FA, Kaushik NK, Sharma P, Choudary GV, Murphy PS, Venkitasubramanian TA. Calmoduliln-like activity in mycobacteria. Indian J Biochem 1991;28:491-5.  Back to cited text no. 28      
29.Kristiansen JE, Amaral L. The potential management of resistant infections with non-antibiotics. J Antimicrob Chemother 1997;40:319-27.  Back to cited text no. 29  [PUBMED]  [FULLTEXT]  
30.Reddy PH, Burra SS, Murphy PS. Correlation between calmodulin-like protein, phospholipids and growth in glucose-grown Mycobacterium phlei. Can J Microbiol 1992;38:339-42.  Back to cited text no. 30      
31.McMurry L, Petrucci RE, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Nat Acad Sci USA 1980;77:3974-7.  Back to cited text no. 31      
32.Van Bambeke F, Glupczynski Y, Plesiat P, Pechere JC, Tulkens PM. Antibiotic efflux pumps in prokaryotic cells: Occurrence, impact on resistance and strategies for the future of antimicrobial therapy. J Antimicrob Chemother 2003;51:1055-65.  Back to cited text no. 32      
33.Kunin WE, Lawton JH. Does biodiversity matter? Evaluating the case for conserving species. In: Gaston KJ, editor. Biodiversity: A biology of numbers and differences. London: Blackwell Science; 1996. p. 283-308.  Back to cited text no. 33      
34.Pieroni A, Giusti ME, Grazzini A. Animal remedies in the folk medicinal practices of the Lucca and Pistoia Provinces, Central Italy. In: Fleurentin J, Pelt JM, Mazars G, editors. Des sources du savoir aux médicaments du futur/From the sources of knowledge to the medicines of the future. Proceedings of the 4 th European Colloquium of Ethnopharmacology, Paris: IRD Éditions; 2002. p. 371-5.  Back to cited text no. 34      



 
 
    Tables

  [Table 1]


This article has been cited by
1 Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes
Voukeng, I.K. and Kuete, V. and Dzoyem, J.P. and Fankam, A.G. and Noumedem, J.A.K. and Kuiate, J.R. and Pages, J.-M.
BMC Research Notes. 2012; 5(299)
[Pubmed]
2 The trade in medicinal animals in Northeastern Brazil
Ferreira, F.S. and Albuquerque, U.P. and Coutinho, H.D.M. and Almeida, W.D.O. and Alves, R.R.D.N.
Evidence-based Complementary and Alternative Medicine. 2012; 2012(126938)
[Pubmed]
3 Natural products from ethnodirected studies: Revisiting the ethnobiology of the zombie poison
Albuquerque, U.P. and Melo, J.G. and Medeiros, M.F. and Menezes, I.R. and Moura, G.J. and Asfora El-Deir, A.C. and Nbrega Alves, R.R. and De Medeiros, P.M. and De Sousa Arajo, T.A. and Alves Ramos, M. and Silva, R.R. and Almeida, A.L. and Almeida, C.D.F.C.
Evidence-based Complementary and Alternative Medicine. 2012; 2012(202508)
[Pubmed]
4 2012-Another successful new year for Pharmacogn Mag.
Mueen Ahmed, K.K.
Pharmacognosy Magazine. 2012; 8(29): 1-3
[Pubmed]
5 Evaluation of the antimicrobial activity of the decoction of Tropidurus hispidus (Spix, 1825) and Tropidurus semitaeniatus (Spix, 1825) used by the traditional medicine
Coutinho, H.D.M. and Santos, I.J.M. and Matias, E.F.F. and Santos, K.K.A. and Braga, M.F.B.M. and Andrade, J.C. and Souza, T.M. and Santos, F.A.V. and Sousa, A.C.A. and Costa, J.G.M. and Menezes, I.R.A. and Alves, R.R.N. and Almeida, W.O.
Evidence-based Complementary and Alternative Medicine. 2012; 2012(747969)
[Pubmed]
6 Evaluation of the Antimicrobial Activity of the Decoction of Tropidurus hispidus (Spix, 1825) and Tropidurus semitaeniatus (Spix, 1825) Used by the Traditional Medicine
Israel J. M. Santos,Edinardo F. F. Matias,Karla K. A. Santos,Maria F. B. M. Braga,Jacqueline C. Andrade,Teógenes M. Souza,Francisco A. V. Santos,Ana Carla A. Sousa,José G. M. Costa,Irwin R. A. Menezes,Rômulo R. N. Alves,Waltecio O. Almeida,Henrique D. M. Coutinho
Evidence-Based Complementary and Alternative Medicine. 2012; 2012: 1
[Pubmed]
7 Antibacterial and antibiotic-potentiation activities of the methanol extract of some cameroonian spices against Gram-negative multi-drug resistant phenotypes
Igor K Voukeng,Victor Kuete,Jean P Dzoyem,Aimé G Fankam,Jaures A K Noumedem,Jules R Kuiate,Jean-Marie Pages
BMC Research Notes. 2012; 5(1): 299
[Pubmed]
8 Natural Products from Ethnodirected Studies: Revisiting the Ethnobiology of the Zombie Poison
Ulysses Paulino Albuquerque,Joabe Gomes Melo,Maria Franco Medeiros,Irwin Rose Menezes,Geraldo Jorge Moura,Ana Carla Asfora El-Deir,Rômulo Romeu Nóbrega Alves,Patrícia Muniz de Medeiros,Thiago Antonio de Sousa Araújo,Marcelo Alves Ramos,Rafael Ricardo Silva,Alyson Luiz Almeida,Cecília de Fátima Castelo Almeida
Evidence-Based Complementary and Alternative Medicine. 2012; 2012: 1
[Pubmed]
9 The Trade in Medicinal Animals in Northeastern Brazil
Felipe Silva Ferreira,Ulysses Paulino Albuquerque,Henrique Douglas Melo Coutinho,Waltécio de Oliveira Almeida,Rômulo Romeu da Nóbrega Alves
Evidence-Based Complementary and Alternative Medicine. 2012; 2012: 1
[Pubmed]
10 Antibacterial activities of selected Cameroonian spices and their synergistic effects with antibiotics against multidrug-resistant phenotypes
Aimé G Fankam,Victor Kuete,Igor K Voukeng,Jules R Kuiate,Jean-Marie Pages
BMC Complementary and Alternative Medicine. 2011; 11(1): 104
[Pubmed]
11 Antibacterial activities of selected Cameroonian spices and their synergistic effects with antibiotics against multidrug-resistant phenotypes
Fankam, A.G. and Kuete, V. and Voukeng, I.K. and Kuiate, J.R. and Pages, J.-M.
BMC Complementary and Alternative Medicine. 2011; 11(104)
[Pubmed]
12 Potentiation of aminoglycoside antibiotic activity using the body fat from the snake Boa constrictor
Ferreira, F.S., Silva, N.L.G., Matias, E.F.F., Brito, S.V., Oliveira, F.G., Costa, J.G.M., Coutinho, H.D.M., (...), Alves, R.R.N.
Brazilian Journal of Pharmacognosy. 2011; 21(3): 503-509
[Pubmed]



 

Top
 
  Search
 
    Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
    Access Statistics
    Email Alert *
    Add to My List *
* Registration required (free)  

 
  In this article
    Abstract
    Introduction
    Materials and Me...
    Results and Disc...
    References
    Article Tables

 Article Access Statistics
    Viewed3461    
    Printed216    
    Emailed2    
    PDF Downloaded130    
    Comments [Add]    
    Cited by others 12    

Recommend this journal